留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹槽叶尖尾缘设计对高压涡轮气动性能的影响

蒋红梅 张子扬 卢少鹏

蒋红梅, 张子扬, 卢少鹏. 凹槽叶尖尾缘设计对高压涡轮气动性能的影响[J]. 航空动力学报, 2024, 39(6):20230512 doi: 10.13224/j.cnki.jasp.20230512
引用本文: 蒋红梅, 张子扬, 卢少鹏. 凹槽叶尖尾缘设计对高压涡轮气动性能的影响[J]. 航空动力学报, 2024, 39(6):20230512 doi: 10.13224/j.cnki.jasp.20230512
JIANG Hongmei, ZHANG Ziyang, LU Shaopeng. Influence of trailing edge designs of squealer tips on aerodynamic performance of high-pressure turbine[J]. Journal of Aerospace Power, 2024, 39(6):20230512 doi: 10.13224/j.cnki.jasp.20230512
Citation: JIANG Hongmei, ZHANG Ziyang, LU Shaopeng. Influence of trailing edge designs of squealer tips on aerodynamic performance of high-pressure turbine[J]. Journal of Aerospace Power, 2024, 39(6):20230512 doi: 10.13224/j.cnki.jasp.20230512

凹槽叶尖尾缘设计对高压涡轮气动性能的影响

doi: 10.13224/j.cnki.jasp.20230512
基金项目: 国家自然科学基金(52206050)
详细信息
    作者简介:

    蒋红梅(1985-),女,助理研究员、硕士生导师,博士,主要从事叶轮机械气动换热管理研究

    通讯作者:

    卢少鹏(1984-),男,副研究员,博士,主要从事航空发动机及燃气轮机基础理论与设计研究。E-mail:lusp@sjtu.edu.cn

  • 中图分类号: V231.3

Influence of trailing edge designs of squealer tips on aerodynamic performance of high-pressure turbine

  • 摘要:

    针对凹槽叶尖,设计全凹槽、压力侧尾切、吸力侧尾切尾缘构型,研究不同尾缘构型及尾切位置对叶尖流动机理及气动性能影响规律。结果表明:压力侧尾切叶尖会导致凹槽涡泄漏位置前移,并且在吸力侧叶尖相应位置附近形成尾切涡,从而导致尾缘下游总压损失增大,最多增加了7.1%;吸力侧尾切叶尖凹槽内流动从切除位置流出而非横跨吸力侧肋边泄漏,总压损失相对减小,最多减小了4.6%。相较于全凹槽叶尖构型和压力侧尾切构型,吸力侧尾切构型具有更优的气动性能。

     

  • 图 1  高速连续风洞及平面叶栅试验台

    Figure 1.  High-speed continuous wind tunnel and turbine cascade experimental setup

    图 2  测试段示意图

    Figure 2.  Schematic diagram of test section

    图 3  五孔探针位置控制设备及安装

    Figure 3.  Five-hole probe position control equipment and installation

    图 4  五孔探针校准曲线

    Figure 4.  Five-hole probe calibration map

    图 5  全凹槽及尾切叶尖模型和几何尺寸

    Figure 5.  Full cavity and cutback blade tip models and geometries and dimensions

    图 6  不同凹槽叶尖构型网格及壁面y+分布

    Figure 6.  Meshes of different tip geometries and y+ distribution of wall

    图 7  全凹槽叶尖构型不同网格密度下叶尖吸力侧展向平均质量通量比

    Figure 7.  Spanwise averaged mass flux ratio at full cavity blade tip suction side clearance with different grid sizes

    图 8  全凹槽叶尖构型叶尖及叶中载荷试验结果与计算结果对比

    Figure 8.  Comparison of experimental and numerical results of load at full cavity blade tip and midspan

    图 9  全凹槽叶尖尾缘下游10%轴向弦长处截面总压损失系数试验结果与计算结果对比

    Figure 9.  Comparison of experimental and numerical results of total pressure loss coefficient of full cavity blade at 10% axial chord downstream of trailing edge

    图 10  全凹槽叶尖构型叶尖流场涡系流线及截面涡量云图

    Figure 10.  Streamlines of vortices and streamwise vorticity at full cavity blade tip

    图 11  不同尾切叶尖构型叶尖流场涡系流线及截面涡量云图

    Figure 11.  Streamlines of vortices and streamwise vorticity of different cutback blade tips

    图 12  压力侧尾切设计叶尖尾缘处主要涡系

    Figure 12.  Major vortices at blade tip trailing edge of pressure side cutback

    图 13  吸力侧尾切设计叶尖尾缘处流场

    Figure 13.  Flow field at blade tip trailing edge of suction side cutback

    图 14  全凹槽与不同尾切设计在尾缘下游10%轴向弦长截面的总压损失系数

    Figure 14.  Total pressure loss coefficient of full cavity and cutback tips at 10% axial chord downstream of trailing edge

    图 15  全凹槽与不同尾切设计在尾缘下游10%轴向弦长截面的平均总压损失系数

    Figure 15.  Averaged total pressure loss coefficient of full cavity and cutback tips at 10% axial chord downstream of trailing edge

    图 16  不同叶尖设计下吸力侧间隙叶尖泄漏量分布云图及展向平均质量通量

    Figure 16.  Leakage and spanwise averaged mass flux at blade tip suction side clearance of different tip designs

    图 17  不同叶尖设计下叶片97%叶高处等熵马赫数

    Figure 17.  Isentropic Mach number at 97% span of different tip designs

    图 18  不同叶尖设计下叶片吸力侧通道截面熵增云图及涡系结构

    Figure 18.  Entropy rise contours and vortices at suction side passage of different tip designs

    图 19  全凹槽与压力侧尾切设计吸力侧通道各截面熵增云图

    Figure 19.  Entropy rise contours at suction side passage clips of full cavity and pressure side cutback tip

    图 20  不同尾缘设计下尾缘下游10%轴向弦长处周向平均总压损失系数沿叶高分布

    Figure 20.  Circumferentially averaged total pressure loss coefficient distribution along span at 10% axial chord downstream of trailing edge of different blade tip designs

    图 21  不同尾缘设计下尾缘下游10%轴向弦长处周向平均气流角沿叶高分布

    Figure 21.  Circumferentially averaged flow angle distribution at 10% axial chord downstream of trailing edge of different blade tip designs

    表  1  试验边界条件

    Table  1.   Experimental boundary conditions

    参数数值
    进口总压 $ {p}_{\mathrm{i}\mathrm{n}}^{*} $/Pa140 000
    进口总温 $ {T}_{\mathrm{i}\mathrm{n}}^{*} $/K328
    出口静压 $ {p}_{\mathrm{i}\mathrm{n}} $/Pa101 325
    出口马赫数0.65
    进口雷诺数(基于叶片轴向弦长)306 000
    进口湍流度/%5
    下载: 导出CSV
  • [1] BUNKER R S. A review of turbine blade tip heat transfer[J]. Annals of the New York Academy of Sciences,2001,934(1): 64-79. doi: 10.1111/j.1749-6632.2001.tb05843.x
    [2] BUNKER R S. Axial turbine blade tips: function,design,and durability[J]. Journal of Propulsion and Power,2006,22(2): 271-285. doi: 10.2514/1.11818
    [3] YAMAMOTO A. Interaction mechanisms between tip leakage flow and the passage vortex in a linear turbine rotor cascade[J]. Journal of Turbomachinery,1988,110(3): 329-338. doi: 10.1115/1.3262201
    [4] 王大磊,朴英,陈美宁. 高压涡轮转子间隙泄漏流动的非定常特征研究[J]. 航空动力学报,2012,27(11): 2569-2576. WANG Dalei,PIAO Ying,CHEN Meining. Study of unsteady tip leakage flow characteristic in high pressure turbine stage[J]. Journal of Aerospace Power,2012,27(11): 2569-2576. (in Chinese

    WANG Dalei, PIAO Ying, CHEN Meining. Study of unsteady tip leakage flow characteristic in high pressure turbine stage[J]. Journal of Aerospace Power, 2012, 27(11): 2569-2576. (in Chinese)
    [5] 魏佐君,段文华,乔渭阳,等. 涡轮转子叶尖泄漏涡涡核稳定性及控制[J]. 航空动力学报,2018,33(9): 2139-2149. WEI Zuojun,DUAN Wenhua,QIAO Weiyang,et al. Analysis and control of tip-leakage vortex core stability of turbine rotor[J]. Journal of Aerospace Power,2018,33(9): 2139-2149. (in Chinese

    WEI Zuojun, DUAN Wenhua, QIAO Weiyang, et al. Analysis and control of tip-leakage vortex core stability of turbine rotor[J]. Journal of Aerospace Power, 2018, 33(9): 2139-2149. (in Chinese)
    [6] ANTO K,XUE S,NG W F,et al. Effects of tip clearance gap and exit Mach number on turbine blade tip and near-tip heat transfer[R]. ASME GT-2013-94345,2013.
    [7] COULL J D,ATKINS N R. The influence of boundary conditions on tip leakage flow[J]. Journal of Turbomachinery,2015,137(6): 061005. doi: 10.1115/1.4028796
    [8] KRISHNABABU S K,NEWTON P J,DAWES W N,et al. Aerothermal investigations of tip leakage flow in axial flow turbines: Part I: effect of tip geometry and tip clearance gap[J]. Journal of Turbomachinery,2009,131(1): 011006. doi: 10.1115/1.2950068
    [9] 高杰,郑群,张曦,等. 涡轮叶顶泄漏涡非定常破碎特性分析[J]. 推进技术,2016,37(2): 242-249. GAO Jie,ZHENG Qun,ZHANG Xi,et al. Analysis of unsteady breakdown characteristics of tip leakage vortex in turbines[J]. Journal of Propulsion Technology,2016,37(2): 242-249. (in Chinese

    GAO Jie, ZHENG Qun, ZHANG Xi, et al. Analysis of unsteady breakdown characteristics of tip leakage vortex in turbines[J]. Journal of Propulsion Technology, 2016, 37(2): 242-249. (in Chinese)
    [10] TALLMAN J,LAKSHMINARAYANA B. Numerical simulation of tip leakage flows in axial flow turbines,with emphasis on flow physics: part Ⅰ effect of tip clearance height[J]. Journal of Turbomachinery,2001,123(2): 314-323. doi: 10.1115/1.1368881
    [11] 傅力宏,张雪辉,陈海生,等. 涡轮叶顶泄漏控制研究进展[J]. 工程热物理学报,2023,44(5): 1177-1198. FU Lihong,ZHANG Xuehui,CHEN Haisheng,et al. Research progress of turbine tip leakage control[J]. Journal of Engineering Thermophysics,2023,44(5): 1177-1198. (in Chinese

    FU Lihong, ZHANG Xuehui, CHEN Haisheng, et al. Research progress of turbine tip leakage control[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1177-1198. (in Chinese)
    [12] AZAD G S,HAN J C,BOYLE R J. Heat transfer and flow on the squealer tip of a gas turbine blade[J]. Journal of Turbomachinery,2000,122(4): 725-732. doi: 10.1115/1.1311284
    [13] KWAK J S,HAN J C. Heat transfer coefficient and film-cooling effectiveness on the squealer tip of a gas turbine blade[R]. ASME GT2002-30555,2002.
    [14] COULL J D,ATKINS N R,HODSON H P. High efficiency cavity winglets for high pressure turbines[R]. ASME GT2014-25261,2014.
    [15] ZOU Zhengping,SHAO Fei,LI Yiran,et al. Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance[J]. Energy,2017,138: 167-184. doi: 10.1016/j.energy.2017.07.047
    [16] HEYES F J G,HODSON H P,DAILEY G M. The effect of blade tip geometry on the tip leakage flow in axial turbine cascades[J]. Journal of Turbomachinery,1992,114(3): 643-651. doi: 10.1115/1.2929188
    [17] 李伟,乔渭阳,许开富,等. 涡轮叶尖镶嵌肋条对泄漏流场的影响[J]. 航空动力学报,2008,23(8): 1523-1529. LI Wei,QIAO Weiyang,XU Kaifu,et al. Influence of squealer tip on tip leakage flow in axial turbine[J]. Journal of Aerospace Power,2008,23(8): 1523-1529. (in Chinese

    LI Wei, QIAO Weiyang, XU Kaifu, et al. Influence of squealer tip on tip leakage flow in axial turbine[J]. Journal of Aerospace Power, 2008, 23(8): 1523-1529. (in Chinese)
    [18] CAMCI C,DEY D,KAVURMACIOGLU L. Tip leakage flows near partial squealer rims in an axial flow turbine stage[R]. ASME GT2003-38979,2003.
    [19] LEE S W,LEE S E. Tip gap flow characteristics in a turbine cascade equipped with pressure-side partial squealer rims[J]. International Journal of Heat and Fluid Flow,2014,50: 369-377. doi: 10.1016/j.ijheatfluidflow.2014.09.008
    [20] KIM J H,LEE S Y,CHUNG J T. Numerical analysis of the aerodynamic performance & heat transfer of a transonic turbine with a partial squealer tip[J]. Applied Thermal Engineering,2019,152: 878-889. doi: 10.1016/j.applthermaleng.2019.02.066
    [21] 王掩刚,刘波,姜健,等. 涡轮叶片尾缘开缝喷气的数值模拟和试验研究[J]. 航空动力学报,2006,21(3): 474-479. WANG Yangang,LIU Bo,JIANG Jian,et al. Experiment and numerical simulation investigation of turbine blade with trailing edge ejection[J]. Journal of Aerospace Power,2006,21(3): 474-479. (in Chinese

    WANG Yangang, LIU Bo, JIANG Jian, et al. Experiment and numerical simulation investigation of turbine blade with trailing edge ejection[J]. Journal of Aerospace Power, 2006, 21(3): 474-479. (in Chinese)
    [22] LU S,MA H,ZHANG Q,et al. Cutback squealer tip trailing edge cooling performance[J]. International Journal of Heat and Mass Transfer,2020,154: 119632. doi: 10.1016/j.ijheatmasstransfer.2020.119632
    [23] CHENG Fengna,ZHANG Jingzhou,ZHANG Jingyang,et al. Effect of cutbacks on tip leakage flow and film-cooling effectiveness of a turbine blade tip under relative moving condition[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2021,64(6): 293-303. doi: 10.2322/tjsass.64.293
    [24] LU S,ZHANG Q,HE L. A high-speed disk rotor rig design for tip aerothermal research[J]. Journal of Turbomachinery,2022,144(5): 051002. doi: 10.1115/1.4052603
    [25] JIANG H,PENG X,XIE W,et al. Development of a large-scale high-speed linear cascade rig for turbine blade tip heat transfer study[J]. Aerospace,2022,9(11): 695. doi: 10.3390/aerospace9110695
    [26] XIE W,LU S,JIANG H,et al. Interaction mechanism of transonic squealer tip cooling with the effect of high-speed relative casing motion[J]. Journal of Turbomachinery,2023,145(8): 081016. doi: 10.1115/1.4062278
    [27] DENTON J D. Loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  26
  • HTML浏览量:  18
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 网络出版日期:  2024-01-25

目录

    /

    返回文章
    返回