留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

端壁SJA对压气机叶栅角区分离影响

郑维新 曾聪 陈绍文

郑维新, 曾聪, 陈绍文. 端壁SJA对压气机叶栅角区分离影响[J]. 航空动力学报, 2024, 39(8):20230563 doi: 10.13224/j.cnki.jasp.20230563
引用本文: 郑维新, 曾聪, 陈绍文. 端壁SJA对压气机叶栅角区分离影响[J]. 航空动力学报, 2024, 39(8):20230563 doi: 10.13224/j.cnki.jasp.20230563
ZHENG Weixin, ZENG Cong, CHEN Shaowen. Effect of endwall SJA on the corner separation of compressor cascade[J]. Journal of Aerospace Power, 2024, 39(8):20230563 doi: 10.13224/j.cnki.jasp.20230563
Citation: ZHENG Weixin, ZENG Cong, CHEN Shaowen. Effect of endwall SJA on the corner separation of compressor cascade[J]. Journal of Aerospace Power, 2024, 39(8):20230563 doi: 10.13224/j.cnki.jasp.20230563

端壁SJA对压气机叶栅角区分离影响

doi: 10.13224/j.cnki.jasp.20230563
基金项目: 航空科学基金(2023M039077001); 国家自然科学基金(U2233207)
详细信息
    作者简介:

    郑维新(1976-),男,高级工程师,主要从事燃气轮机/航空发动机设计研究。E-mail:zhengweixin1976@163.com

    通讯作者:

    陈绍文(1979-),男,教授,博士生,主要从事叶轮机械设计及流动控制研究。E-mail:cswemail@hit.edu.cn

  • 中图分类号: V231.3

Effect of endwall SJA on the corner separation of compressor cascade

  • 摘要:

    针对某型轴流压气机叶栅角区存在流动分离的问题,利用扫频射流激励器(SJA)主动流动控制技术,采用非定常数值计算方法对端壁SJA控制压气机平面叶栅角区分离的影响机理进行研究,分析和讨论了SJA位置布置、射流压比设定、射流偏角设定的影响规律和流场特性。研究结果表明:端壁SJA主要影响端壁和叶片表面附面层的发展和迁移,通过抑制集中脱落涡的生成与发展,以达到抑制角区分离、减小角区流动损失的目的;当SJA布置在轴向位置$ {x}_{\mathrm{S}\mathrm{J}\mathrm{A}} $/b=85%处、靠近吸力面时,降低流动损失的效果最佳;当SJA射流压比大约为1.01时,利用仅占主流0.03%的射流流量就可使得总压损失系数减小13.4%。此外,通过合理设计SJA射流偏角可有效改善端壁SJA存在的“扫掠盲点”问题,使得SJA控制效果得到进一步提高。

     

  • 图 1  数值计算模型图

    Figure 1.  Schematic diagram of the numerical model

    图 2  SJA端壁布置示意图

    Figure 2.  Schematic diagram of the SJA end wall arrangement

    图 3  网格划分示意图

    Figure 3.  Grid distribution

    图 4  不同网格时截面平均时均总压损失系数

    Figure 4.  Time-averaged total pressure loss coefficient averaged on the outlet section with different grids

    图 5  原型静叶片数值与试验结果对比

    Figure 5.  Comparison of original stator between numerical results and experimental results

    图 6  不同射流轴向位置下截面平均时均总压损失系数分布

    Figure 6.  Distribution of the time-averaged total pressure loss coefficient averaged on the outlet section at different axial positions of SJA

    图 7  不同射流轴向位置下节距平均总压损失系数沿叶高方向分布

    Figure 7.  Pitch-averaged total pressure loss coefficient distributionalong span at different axial positions of SJA

    图 8  不同射流轴向位置下时均总压损失系数云图

    Figure 8.  Time-averaged total pressure loss coefficient distribution at different axial positions of SJA

    图 9  不同射流轴向位置下静压系数沿叶高分布

    Figure 9.  Static pressure coefficient distribution along span at different axial positions of SJA

    图 10  不同射流轴向位置下吸力面及端壁表面极限流线

    Figure 10.  Distribution of limiting streamlines on the suction surface and end-wall surface at different axial positions of SJA

    图 11  不同射流轴向方案下的时均轴向速度

    Figure 11.  Time-averaged axial velocity at different axial positions of SJA

    图 12  SJA控制下不同时刻出口流场特性及损失分布

    Figure 12.  Flow field characteristics and loss distribution at different time points under SJA control

    图 13  不同周向位置下截面平均时均总压损失系数随射流压比的变化

    Figure 13.  Change of the time-averaged total pressure loss coefficient averaged on the outlet section with the jet pressure ratio at different circumferential positions

    图 14  不同轴向位置下截面平均时均总压损失系数随射流压比的变化

    Figure 14.  Change of the time-averaged total pressure loss coefficient averaged on the outlet section with the jet pressure ratio at different axial positions

    图 15  SJA在不同射流偏角时的流线图

    Figure 15.  Streamlines at different jet deflection angles

    图 16  不同射流偏角下截面平均时均总压损失系数随射流压比的变化

    Figure 16.  Change of the time-averaged total pressure loss coefficient averaged on the outlet section with the jet pressure ratio at different jet deflection angles

    图 17  不同射流偏角下时均总压损失系数云图沿轴向的分布

    Figure 17.  Time-averaged total pressure loss coefficient distribution at different jet deflection angles along the axis

    表  1  叶栅几何气动参数

    Table  1.   Geometric and aerodynamic parameters of the compressor cascade

    参数数值
    轴向弦长 b/mm117.3
    弦长 c/mm120
    叶片高度 H/mm160
    节距 t/mm74
    几何进气角 β1/(°)32.123
    几何出气角 β2/(°)7.877
    折转角 Δβ/(°)40
    安装角 γ/(°)12
    来流马赫数 Ma0.21
    下载: 导出CSV

    表  2  SJA主要几何参数

    Table  2.   Main geometric parameters of the SJA

    参数数值
    宽度 W/mm13.6
    长度 L/mm16
    高度 HSJA/mm1
    出口喉部宽度 w/mm2
    下载: 导出CSV
  • [1] MENG Qinghe,CHEN Shaowen,LI Weihang,et al. Numerical investigation of a sweeping jet actuator for active flow control in a compressor cascade[R]. ASME Paper GT2018-76052,2018.
    [2] OTTO C,TEWES P,LITTLE J C,et al. Comparison of fluidic oscillators and steady jets for separation control on a wall-mounted hump[R]. AIAA 2018-1281,2018.
    [3] OTTO C,TEWES P,LITTLE J C,et al. Comparison between fluidic oscillators and steady jets for separation control[J]. AIAA Journal,2019,57(12): 5220-5229.
    [4] OSTERMANN F,WOSZIDLO R,NAYERI C N,et al. Properties of a sweeping jet emitted from a fluidic oscillator[J]. Journal of Fluid Mechanics,2018,857: 216-238.
    [5] KOKLU M,OWENS L R. Flow separation control over a ramp using sweeping jet actuators[R]. AIAA 2014-2367,2014.
    [6] KOKLU M,PACK MELTON L G. Sweeping jet actuator in a quiescent environment[R]. AIAA 2013-2477,2013.
    [7] NICKOL C L,HALLER W J. Assessment of the performance potential of advanced subsonic transport concepts for NASA’s environmentally responsible aviation project[R]. AIAA 2016-1030,2016.
    [8] WHALEN E A,LACY D S,LIN J C,et al. Performance enhancement of a full-scale vertical tail model equipped with active flow control[R]. AIAA 2015-0784,2015.
    [9] 王忠. 单出口振荡射流在流动控制中的应用研究[D]. 南京: 南京航空航天大学,2016. WANG Zhong. Application researches of single-outlet oscillating jets in fluid flow control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2016. (in Chinese

    WANG Zhong. Application researches of single-outlet oscillating jets in fluid flow control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [10] 赵曈. 振荡射流器性能优化及应用[D]. 南京: 南京航空航天大学,2021. ZHAO Tong. Performance optimization and application of sweeping jet actuators[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2021. (in Chinese

    ZHAO Tong. Performance optimization and application of sweeping jet actuators[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese)
    [11] TEWES P,TAUBERT L,WYGNANSKI I. On the use of sweeping jets to augment the lift of a lambda-wing[R]. AIAA 2010-4689,2010.
    [12] SEELE R,GRAFF E,GHARIB M,et al. Improving rudder effectiveness with sweeping jet actuators[R]. AIAA 2012-3244,2012.
    [13] SEELE R,GRAFF E,LIN J,et al. Performance enhancement of a vertical tail model with sweeping jet actuators[R]. AIAA 2013-0411,2013.
    [14] SEELE R,TEWES P,WOSZIDLO R,et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft,2009,46(6): 2098-2106.
    [15] PACK MELTON L G. Active flow separation control on a NACA 0015 wing using fluidic actuators [R]. AIAA 2014-2364,2014.
    [16] CHOEPHEL T,CODER J,MAUGHMER M. Airfoil boundary-layer flow control using fluidic oscillators[R]. AIAA 2012-2655,2012.
    [17] 马志明. 基于流体振荡器的S形进气道畸变流动控制机理与方法研究[D]. 南京: 南京航空航天大学,2021. MA Zhiming. Flow control mechanism and method of fluidic oscillator on the distorted flow in S-shaped inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2021. (in Chinese

    MA Zhiming. Flow control mechanism and method of fluidic oscillator on the distorted flow in S-shaped inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese)
    [18] 孟腾,董金钟,吴西云. 流体振荡器在进气道流动控制中的应用研究[J]. 科学技术与工程,2016,16(32): 319-324,341. MENG Teng,DONG Jinzhong,WU Xiyun. Active flow control with fluidic in S-shaped inlet[J]. Science Technology and Engineering,2016,16(32): 319-324,341. (in Chinese

    MENG Teng, DONG Jinzhong, WU Xiyun. Active flow control with fluidic in S-shaped inlet[J]. Science Technology and Engineering, 2016, 16(32): 319-324, 341. (in Chinese)
    [19] 王士奇. 流体振荡器: 一种有前途的非稳态激励器[J]. 航空动力,2022(1): 18-21. WANG Shiqi. Fluidic oscillator: a promising unsteady actuator[J]. Aerospace Power,2022(1): 18-21. (in Chinese

    WANG Shiqi. Fluidic oscillator: a promising unsteady actuator[J]. Aerospace Power, 2022(1): 18-21. (in Chinese)
    [20] 孟庆鹤,李伟航,陈绍文,等. 扫频式射流对涡轮叶栅间隙泄漏流动影响的数值研究[J]. 推进技术,2020,41(6): 1250-1257. MENG Qinghe,LI Weihang,CHEN Shaowen,et al. Numerical study for effects of sweeping jets on tip clearance flow in a turbine cascade[J]. Journal of Propulsion Technology,2020,41(6): 1250-1257. (in Chinese

    MENG Qinghe, LI Weihang, CHEN Shaowen, et al. Numerical study for effects of sweeping jets on tip clearance flow in a turbine cascade[J]. Journal of Propulsion Technology, 2020, 41(6): 1250-1257. (in Chinese)
    [21] CHEN Shaowen,LI Weihang,YANG Pengcheng,et al. Aerodynamic performance and leakage flow in turbine cascades with sweeping jet actuators[J]. Journal of Turbomachinery,2023,145(6): 061015.
    [22] CHEN Shaowen,LI Weihang. Effects of combined sweeping jet actuator and winglet tip on aerodynamic performance in a turbine cascade[J]. Aerospace Science and Technology,2022,131: 107956.
    [23] 孟庆鹤. 非定常射流控制轴流压气机叶栅角区分离的机理研究[D]. 哈尔滨: 哈尔滨工业大学,2021. MENG Qinghe. Research on the flow control mechanism of unsteady blowing on axial compressor cascade corner separation[D]. Harbin: Harbin Institute of Technology,2021. (in Chinese

    MENG Qinghe. Research on the flow control mechanism of unsteady blowing on axial compressor cascade corner separation[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [24] 孟庆鹤,陈绍文,刘宏言,等. 扫频式射流对设计工况压气机叶栅流动分离影响的数值研究[J]. 推进技术,2020,41(3): 566-573. MENG Qinghe,CHEN Shaowen,LIU Hongyan,et al. Numerical study for effects of sweeping jets on separation in a compressor cascade at designed condition[J]. Journal of Propulsion Technology,2020,41(3): 566-573. (in Chinese

    MENG Qinghe, CHEN Shaowen, LIU Hongyan, et al. Numerical study for effects of sweeping jets on separation in a compressor cascade at designed condition[J]. Journal of Propulsion Technology, 2020, 41(3): 566-573. (in Chinese)
    [25] LU Weiyu,JIAO Yanmei,FU Xin. Concept of self-excited unsteady flow control on a compressor blade and its preliminary proof by numerical simulation[J]. Aerospace Science and Technology,2022,123: 107498.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  34
  • HTML浏览量:  34
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 网络出版日期:  2024-05-28

目录

    /

    返回文章
    返回