留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轴-涡扇变循环发动机方案设计的多设计点融合算法

任成 贾琳渊 张平平 陈玉春 杨洁

任成, 贾琳渊, 张平平, 等. 涡轴-涡扇变循环发动机方案设计的多设计点融合算法[J]. 航空动力学报, 2024, 39(4):20230564 doi: 10.13224/j.cnki.jasp.20230564
引用本文: 任成, 贾琳渊, 张平平, 等. 涡轴-涡扇变循环发动机方案设计的多设计点融合算法[J]. 航空动力学报, 2024, 39(4):20230564 doi: 10.13224/j.cnki.jasp.20230564
REN Cheng, JIA Linyuan, ZHANG Pingping, et al. Fusion algorithm of multi design points for turboshaft-turbofan variable cycle engine scheme design[J]. Journal of Aerospace Power, 2024, 39(4):20230564 doi: 10.13224/j.cnki.jasp.20230564
Citation: REN Cheng, JIA Linyuan, ZHANG Pingping, et al. Fusion algorithm of multi design points for turboshaft-turbofan variable cycle engine scheme design[J]. Journal of Aerospace Power, 2024, 39(4):20230564 doi: 10.13224/j.cnki.jasp.20230564

涡轴-涡扇变循环发动机方案设计的多设计点融合算法

doi: 10.13224/j.cnki.jasp.20230564
基金项目: 国家重大专项基础研究项目(J2019-I-0010-0010);国家自然科学基金面上项目(52372397)
详细信息
    作者简介:

    任成(1993—),男,博士生,研究领域为航空发动机总体设计。E-mail:rencheng@mail.nwpu.edu.cn

    通讯作者:

    贾琳渊(1989—),男,副教授、硕士生导师,博士,研究领域为航空发动机总体设计。E-mail:jialinyuan@nwpu.edu.cn

  • 中图分类号: V231.1

Fusion algorithm of multi design points for turboshaft-turbofan variable cycle engine scheme design

  • 摘要:

    针对有涡轴和涡扇两种工作模态的涡轴-涡扇变循环发动机,提出了其方案设计的多设计点融合算法。以涡喷发动机为例,对发动机多设计点设计的融合算法模型的建立方法进行了介绍; 建立了涡轴-涡扇变循环发动机的多设计点融合算法模型;确定涡轴-涡扇变循环发动机的典型工况点包括高空巡航涡扇模态工况点、地面涡轴模态工况点及转模态工况点,完成发动机方案设计;最后以各典型工况点处飞行器对发动机的性能需求为多设计点融合算法的输入条件,与常规方法得到的参数进行对比验证,结果差异在1%以内。所提出的多设计点融合算法可为变循环发动机总体方案设计提供借鉴。

     

  • 图 1  涡轴-涡扇变循环发动机结构简图

    Figure 1.  Structure diagram of turboshaft-turbofan variable cycle engine

    图 2  传统涡轮发动机总体性能匹配流程

    Figure 2.  Traditional turbine engine overall performance matching process

    图 3  涡轴-涡扇变循环发动机最大状态控制规律

    Figure 3.  Maximum state control law of the turboshaft-turbofan variable cycle engine

    图 4  各可调机构的调节规律和相关参数的变化情况

    Figure 4.  Adjustment rules of each adjustable mechanism and changes of relevant parameters

    图 5  垂直起降高速巡航飞行器的转模态过程

    Figure 5.  Modal transition process of vertical take-off and landing aircraft

    图 6  传统方法与多设计点融合算法设计流程对比

    Figure 6.  Comparison of design processes between traditional methods and fusion algorithms of multi design points

    表  1  涡轴-涡扇变循环发动机设计点参数

    Table  1.   Design point parameters of turboshaft-turbofan variable cycle engine

    部件 参数 数值
    进气道 空气流量Wa /(kg/s) 118.02
    Flade内涵风扇 增压比πf 1.48
    Flade外涵风扇 增压比πFlade 1.98
    导叶角度αFlade/(°) 0.0
    CDFS 增压比πCDFS 1.53
    导叶角度αCDFS/(°) −5.0
    高压压气机 增压比πc 6.9
    燃烧室 出口总温T4/K 1469.16
    外涵道 第一涵道比γ1 0.11
    第二涵道比γ2 3.0
    注:Flade外涵风扇导叶角度为0°时表示导叶处于完全打开状 态,−90.0°时表示导叶处于完全关闭状态,外涵流道不再有 空气流入。
    下载: 导出CSV

    表  2  涡轴-涡扇变循环发动机设计点总体性能

    Table  2.   Overall performance of turboshaft-turbofan variable cycle engine

    性能参数 数值
    发动机地面推力Fn/daN 2574.9
    单位推力Fs/(daN/(kg/s)) 21.82
    耗油率ζ/(kg/(daN·h)) 0.8005
    下载: 导出CSV

    表  3  各限制参数设计点处取值和最大限制值

    Table  3.   Value and the maximum limit value of each limiting parameter at the design point

    限制参数设计点取值限制值
    低压转子物理百分比转速nf100.0100.0
    低压转子相对换算转速nf,cor1.01.0
    高压转子物理百分比转速nc85.42100.0
    低压转子相对换算转速nc,cor1.001.00
    燃烧室出口温度T4/K1469.21600.0
    下载: 导出CSV

    表  4  涡轴-涡扇变循环发动机各设计点处相关参数

    Table  4.   Relevant parameters at each design point of the turboshaft-turbofan variable cycle engine

    部件 参数 H=9 km,Ma=0.8 H=0 km,Ma=0 H=0.5 km,Ma=0
    进气道 空气换算流量/(kg/s) 118.03 61.26 155.3
    Flade内涵风扇 物理百分比转速 100.0 100.0 100.0
    增压比 1.48 1.499 1.499
    Flade外涵风扇 增压比 1.98 1.34
    导叶角度/(°) 0.0 −90.0 −52.0
    CDFS 增压比 1.53 1.53 1.53
    导叶角度/(°) −5.0 −4.9 −4.9
    高压压气机 物理百分比转速 85.42 90.0 89.51
    增压比 6.9 6.76 6.77
    燃烧室 出口总温/K 1469.16 1560.7 1546.87
    涵道比 第一涵道比 0.11 0.11 0.11
    第二涵道比 3.0 1.676
    性能参数 推力/daN 2574.9 3334.0
    单位推力/(daN/(kg/s)) 21.82 21.46
    涡扇模态耗油率/(kg/(daN·h)) 0.8005 1.278
    功率/kW 16500.0 12000.0
    单位功率/(kW/(kg/s)) 269.35 77.26
    涡轴模态耗油率/(kg/(kW·h)) 0.2754 0.355
    下载: 导出CSV

    表  5  涡轴-涡扇变循环发动机性能设计要求

    Table  5.   Performance design requirements of the turboshaft-turbofan variable cycle engine

    参数 H=9 km,Ma=0.8 H=0 km,Ma=0 H=0.5 km,Ma=0
    推力/daN 2574.9 3334.0
    涡扇模态耗油率/(kg/(daN·h)) 0.8005 1.278
    功率/kW 16500.0 12000.0
    涡轴模态耗油率/(kg/(kW·h)) 0.2754 0.355
    下载: 导出CSV

    表  6  涡轴-涡扇变循环发动机部件参数

    Table  6.   Engine component parameters of turboshaft-turbofan variable cycle engine

    部件 参数 H=9 km,Ma=0.8 H=0 km,Ma=0 H=0.5 km,Ma=0
    进气道 空气流量/(kg/s) 118.74 61.48 156.5
    Flade内涵风扇 物理百分比转速 100.0 100.0 100.0
    增压比 1.48 1.499 1.499
    Flade外涵风扇 增压比 1.98 1.34
    导叶角度/(°) 0 −90.0 −52.2
    CDFS 增压比 1.53 1.53 1.53
    导叶角度/(°) −5.0 −4.9 −4.9
    高压压气机 物理百分比转速 85.7 90.1 89.53
    增压比 6.92 6.77 6.77
    燃烧室 出口总温/K 1470.0 1561.4 1547.2
    涵道比 第一涵道比 0.11 0.11 0.11
    第二涵道比 3.0 1.677
    下载: 导出CSV
  • [1] 邓阳平,高正红,詹浩. 鸭式旋翼/机翼飞机的技术发展及其关键技术[J]. 飞行力学,2006,24(3): 1-4. DENG Yangping,GAO Zhenghong,ZHAN Hao. Development and key technologies of the CRW[J]. Flight Dynamics,2006,24(3): 1-4. (in Chinese

    DENG Yangping, GAO Zhenghong, ZHAN Hao. Development and key technologies of the CRW[J]. Flight Dynamics, 2006, 24(3): 1-4. (in Chinese)
    [2] 张啸迟,万志强,章异嬴,等. 旋翼固定翼复合式垂直起降飞行器概念设计研究[J]. 航空学报,2016,37(1): 179-192. ZHANG Xiaochi,WAN Zhiqiang,ZHANG Yiying,et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1): 179-192. (in Chinese

    ZHANG Xiaochi, WAN Zhiqiang, ZHANG Yiying, et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 179-192. (in Chinese)
    [3] BELLIN A I,BROOKS A. Status report: DARPA/NASA convertible turbofan/turboshaft engine program[R]. ASME Paper 83-GT-196,1983.
    [4] ABDALLA K L,BROOKS A. TF34 convertible engine system technology program[R]. Anaheim,CA,US: NASA Technical Reports Server 82A40521,1982.
    [5] NEITZEL R E,HIRSCHKRON R,VINSON P W. Studies of convertible turboshaft/turbofan engines for high-speed rotorcraft[J]. Journal of Aircraft,1985,22(4): 296-302. doi: 10.2514/3.45123
    [6] GARVIN E L,SLOSS T,RESS R,et al. Revolutionary concepts for multi-mode adaptive advanced cycle gas turbine engine[R]. Cincinnati,Ohio,US: 2018 Joint Propulsion Conference,2018.
    [7] 陈玉春,贾琳渊,任成,等. 涡轴涡扇组合循环发动机: CN206694149U[P]. 2018-06-19.
    [8] REN Cheng,CHEN Yuchun,JIA Linyuan,et al. Variable compression component interpolation method for turbine engine[C]//2018 9th International Conference on Mechanical and Aerospace Engineering. Piscataway,US: IEEE,2018: 162-167.
    [9] REN Cheng,CHEN Yuchun,JIA Linyuan,et al. The performance simulation of the conversion process of a double-mode turbo engine[C]//2022 13th International Conference on Mechanical and Aerospace Engineering. Piscataway,US: IEEE,2022: 65-70.
    [10] SIELEMANN M,COÏC C,HÜBEL M,et al. Introduction to multi-point design strategies for aero engines[R]. ASME Paper GT2020-14912,2020.
    [11] SCHUTTE J,TAI J,MAVRIS D. Multi design point cycle design incorporation into the environmental design space[R]. AIAA 2012-3812,2012.
    [12] 郑华雷,王召广,蔡建兵,等. 航空发动机多设计点热力循环分析方法的构建及应用[J]. 燃气涡轮试验与研究,2019,32(5): 8-14. ZHENG Hualei,WANG Zhaoguang,CAI Jianbing,et al. Construction and application of multi-design point method to perform thermodynamic cycle analysis for aero-engine[J]. Gas Turbine Experiment and Research,2019,32(5): 8-14. (in Chinese doi: 10.3969/j.issn.1672-2620.2019.05.002

    ZHENG Hualei, WANG Zhaoguang, CAI Jianbing, et al. Construction and application of multi-design point method to perform thermodynamic cycle analysis for aero-engine[J]. Gas Turbine Experiment and Research, 2019, 32(5): 8-14. (in Chinese) doi: 10.3969/j.issn.1672-2620.2019.05.002
    [13] 郑华雷,苏志敏,黄兴,等. 基于多设计点方法的陶瓷基材料涡桨发动机热力循环分析[J]. 推进技术,2021,42(1): 1-9. ZHENG Hualei,SU Zhimin,HUANG Xing,et al. Thermal cycle analysis of turboprop with ceramic matrix composite based on multiple design points approach[J]. Journal of Propulsion Technology,2021,42(1): 1-9. (in Chinese

    ZHENG Hualei, SU Zhimin, HUANG Xing, et al. Thermal cycle analysis of turboprop with ceramic matrix composite based on multiple design points approach[J]. Journal of Propulsion Technology, 2021, 42(1): 1-9. (in Chinese)
    [14] 郑华雷,蔡建兵,黄兴. 基于多设计点方法的涡轴发动机热力循环分析[J]. 航空发动机,2023,49(1): 41-46. ZHENG Hualei,CAI Jianbing,HUANG Xing. Turboshaft thermodynamic cycle analysis based on multi-design point method[J]. Aeroengine,2023,49(1): 41-46. (in Chinese doi: 10.13477/j.cnki.aeroengine.2023.01.005

    ZHENG Hualei, CAI Jianbing, HUANG Xing. Turboshaft thermodynamic cycle analysis based on multi-design point method[J]. Aeroengine, 2023, 49(1): 41-46. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2023.01.005
    [15] 任成,贾琳渊,卜贤坤,等. 涡轴-涡扇变循环发动机方案及性能匹配设计研究[J/OL]. 推进技术, (2023-07-25) [2023-07-28]. https://link.cnki.net/doi/10.13675/j.cnki.tjjs.2212021. REN Cheng,JIA Linyuan,BU Xiankun,et al. Design and study on scheme and performance matching of turboshaft-turbofan variable cycle engine[J/OL]. Journal of Propulsion Technology, (2023-07-25)[2023-07-28]. https://link.cnki.net/doi/10.13675/j.cnki.tjjs.2212021. (in Chinese

    REN Cheng, JIA Linyuan, BU Xiankun, et al. Design and study on scheme and performance matching of turboshaft-turbofan variable cycle engine[J/OL]. Journal of Propulsion Technology, (2023-07-25)[2023-07-28]. https://link.cnki.net/doi/10.13675/j.cnki.tjjs.2212021. (in Chinese)
    [16] 陈敏,唐海龙. 基于通用核心机的航空发动机派生设计技术研究[C]//第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会暨2021航空发动机技术发展高层论坛论文集(第一册). 成都:中国科协航空发动机产学联合体,2022: 69-76.
    [17] 张少锋,陈玉春,李夏鑫,等. 中小型核心机派生发动机设计研究[J]. 航空工程进展,2019,10(6): 826-835. ZHANG Shaofeng,CHEN Yuchun,LI Xiaxin,et al. Research on design of medium-small core-derived engine[J]. Advances in Aeronautical Science and Engineering,2019,10(6): 826-835. (in Chinese

    ZHANG Shaofeng, CHEN Yuchun, LI Xiaxin, et al. Research on design of medium-small core-derived engine[J]. Advances in Aeronautical Science and Engineering, 2019, 10(6): 826-835. (in Chinese)
    [18] 温泉,马宁,南希. 航空发动机风扇/压气机技术发展趋势[J]. 航空动力,2020(2): 42-46. WEN Quan,MA Ning,NAN Xi. Development trend of aero engine fan and compressor technology[J]. Aerospace Power,2020(2): 42-46. (in Chinese

    WEN Quan, MA Ning, NAN Xi. Development trend of aero engine fan and compressor technology[J]. Aerospace Power, 2020(2): 42-46. (in Chinese)
    [19] 刘永泉,刘太秋,季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报,2015,36(8): 2563-2576. LIU Yongquan,LIU Taiqiu,JI Lucheng. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8): 2563-2576. (in Chinese

    LIU Yongquan, LIU Taiqiu, JI Lucheng. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2563-2576. (in Chinese)
    [20] 任成. 涡轮组合循环发动机一体化及总体性能设计[D]. 西安: 西北工业大学,2018. REN Cheng. Turbine combined cycle engine integration and overall performance design[D]. Xi’an: Northwestern Polytechnical University,2018. (in Chinese

    REN Cheng. Turbine combined cycle engine integration and overall performance design[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese)
    [21] 陈玉春,徐思远,杨云铠,等. 改善航空发动机特性计算收敛性的方法[J]. 航空动力学报,2008,23(12): 2242-2248. CHEN Yuchun,XU Siyuan,YANG Yunkai,et al. Research on the method to solve convergence problem in aero turbo-engine performance computation[J]. Journal of Aerospace Power,2008,23(12): 2242-2248. (in Chinese

    CHEN Yuchun, XU Siyuan, YANG Yunkai, et al. Research on the method to solve convergence problem in aero turbo-engine performance computation[J]. Journal of Aerospace Power, 2008, 23(12): 2242-2248. (in Chinese)
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  121
  • HTML浏览量:  32
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 网络出版日期:  2023-12-22

目录

    /

    返回文章
    返回