航空发动机的支持向量机自适应PID控制
Support vector machines PID adaptive control in aeroengine
-
摘要: 首先介绍了支持向量机(SVM)的原理, 建立了支持向量机回归(SVMR)模型.将SVMR与基于支持向量机的控制器相结合, 组成自适应PID支持向量机控制(SVMC)系统.最后用于某型航空发动机, 通过在选定的设计点处进行控制系统的设计, 利用支持向量机强大非线性映射能力、网络结构的自动最优化特性, 使控制系统在发动机偏离设计点工作时控制系统仍保持很好的性能.为通用非线性控制提供了一种新的控制思路.Abstract: The support vector machine principal and the support vector machine return model are introduced first,and the self-adaptive PID support vector machines' controller is established.It makes use of support vector machines' strong nonlinear mapping ability,and network's structure is optimally auto-created.Finally, the aeroengine controller is designed at the design point.Application results in an aeroengine show that the controller possesses much better performance when the work of the aeroengine deviates from the design point.The presented control strategy introduces a new way for nonlinear control.
-
[1] 李应红,魏询楷,刘建勋.支持向量机的工程应用[M].北京:兵器工业出版社,2004,98-102. [2] 郭迎清.航空发动机神经网络自适应控制研究[J].航空动力学报,2001,16(1),83-86.GUO Yingqing,A new neural network adaptive control scheme research[J].Journal of Aerospace Power,2001,16(1):83-86. [3] HUNT K J,SBARBARO D.Neural networks for nonlinear adaptive model control[J].IEE Proc-D,1991,138(5):428-435. [4] 孙海忠.支持向量机及其在控制中的应用[D].浙江:浙江大学,2003. [5] Vapnik V.The nature of statistical learning theory[M].New York:Springer,1999. [6] Smola A.A tutorial on support vector regression[R].NC-TR-98-030,Royal Holloway College,University of London,UK,1998. [7] CAO L J,GU Q M,Dynamic support vector machines for non-stationary time series forecasting[J].Intelligent Data Analysis,2002,6(1):67-83. [8] HU Q,RANGAIAH G P.Adaptive internal model control of nonlinear process[J].Chemical Engineering Science,1999,54(9):1 205-1 218. [9] 刘建勋,李应红,陈永刚,等.航空发动机LQR控制的模糊神经网络方法[J].航空动力学报,2004,19(6):838-843.LIU Jianxun,LI Yinghong,CHEN Yonggang,et al.Aeroengine LQR control based on fuzzy-neural networks[J].Journal of Aerospace Power,2004,19(6):838-843.
点击查看大图
计量
- 文章访问数: 1608
- HTML浏览量: 7
- PDF量: 406
- 被引次数: 0