留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷水蒸气重整强化管内换热的数值模拟

毛志方 姜培学 刘峰

毛志方, 姜培学, 刘峰. 甲烷水蒸气重整强化管内换热的数值模拟[J]. 航空动力学报, 2011, 26(3): 563-569.
引用本文: 毛志方, 姜培学, 刘峰. 甲烷水蒸气重整强化管内换热的数值模拟[J]. 航空动力学报, 2011, 26(3): 563-569.
MAO Zhi-fang, JIANG Pei-xue, LIU Feng. Numerical simulation of enhanced heat transfer in tubes using methane steam reforming[J]. Journal of Aerospace Power, 2011, 26(3): 563-569.
Citation: MAO Zhi-fang, JIANG Pei-xue, LIU Feng. Numerical simulation of enhanced heat transfer in tubes using methane steam reforming[J]. Journal of Aerospace Power, 2011, 26(3): 563-569.

甲烷水蒸气重整强化管内换热的数值模拟

基金项目: 国家自然科学基金(50676047)

Numerical simulation of enhanced heat transfer in tubes using methane steam reforming

  • 摘要: 以圆管内壁催化剂薄层内发生甲烷水蒸气重整反应为研究对象,对层流条件下反应及换热进行了数值模拟,分析了催化剂活性、薄层厚度、入口气体流量、入口压力、入口温度以及反应物组分比对反应和换热的影响.结果表明:催化剂薄层内的吸热反应可以有效地增强换热,降低壁面温度;提高催化剂活性和增加薄层厚度,可以增加化学反应吸热量,降低壁面温度,但是当薄层厚度达到一定值时,再增加薄层厚度效果很小;入口流量越大,反应转化率越小,化学反应吸热量占总吸热量的比例越小;入口压力越大,反应吸热量越小,壁面温度越高;提高入口温度使得近入口处壁面温度升高,但是对下游壁面温度的影响很小;存在最佳的反应物组分比,从而获得较低的壁面温度和较高的出口氢气含量.

     

  • [1] Huang H,Spadaccini L J,Sobel D R.Fuel-cooled thermal management for advanced aeroengines[J].Journal of Engineering for Gas Turbines and Power,2004,126(2):284-293.
    [2] Kurganov V A,Zeigarnik Y A,Korabelnikov A V,et al.Thermochemical principle of cooling based on steam conversion of methane[J].Thermal Engineering,1996,143(3):198-210.
    [3] Glickstein M R,Spadaccini L J.Applications of endothermic reaction technology to the high speed civil transport .NASA Contractor Report 207404,1998.
    [4] Kuranov A,Korabelnikov A.Hypersonic technologies of atmospheric cruise flight under Ajax concept .AIAA 2008-2524,2008.
    [5] Kuranov A,Korabelnikov A.Catalytic structures for thermochemical protection and fuel conversion .AIAA 2009-7223,2009.
    [6] Kuranov A,Korabelnikov A.Hydrocarbon fuel conversion in the thermal protection reactor .AIAA 2009-7376,2009.
    [7] Korabelnikov A,Kuranov A L.Hypersonic flight vehicle heat protection using chemical heat regeneration .AIAA 2002-0913,2002.
    [8] Kuranov A,Korabelnikov A.Atmospheric cruise flight challenges for hypersonic vehicles under the Ajax concept[J].Journal of Propulsion and Power,2008,24(6):1229-1247.
    [9] 刘峰,姜培学,He S.催化剂薄层内甲烷水蒸气重整反应强化管内对流换热的数值模拟[J].工程物理学报,2006,27(6):987-989. LIU Feng,JIANG Peixue,He S.Numerical simulation of enhanced convection heat transfer using methane-steam reforming in catalyst films in a vertical tube[J].Journal of Engineering Thermophysics,2006,27(6):987-989.(in Chinese)
    [10] 刘峰.催化剂薄层内甲烷水蒸气重整反应强化管内对流换热研究 .北京:清华大学,2005. LIU Feng.Enhanced convection heat transfer using methan-steam reforming in catalyst films in vertical tubes .Beijing:Tsinghua University,2005.(in Chinese)
    [11] Xu J,Gilbert F F.Methane steam reforming,methanation and water-gas shift Ⅰ:intrinsic kinetics[J].AIChE Journal,1989,35(1):88-96.
    [12] 李绍芬.化学与催化反应工程[M].北京:化学工业出版社,1986. LI Shaofen.Chemical and catalytic reaction engineering[M].Beijing:Chemical Industry Press,1986.(in Chinese)
    [13] 贾力.高等传热学[M].北京:高等教育出版社,2003. JIA Li.Advanced heat transfer[M].Beijing:Higher Education Press,2003.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1567
  • HTML浏览量:  4
  • PDF量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-19
  • 修回日期:  2010-04-01
  • 刊出日期:  2011-03-28

目录

    /

    返回文章
    返回