留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于代理模型的浮动壁式火焰筒壁温优化设计

郭家良 温卫东 崔海涛 高建辉

郭家良, 温卫东, 崔海涛, 高建辉. 基于代理模型的浮动壁式火焰筒壁温优化设计[J]. 航空动力学报, 2011, 26(3): 588-592.
引用本文: 郭家良, 温卫东, 崔海涛, 高建辉. 基于代理模型的浮动壁式火焰筒壁温优化设计[J]. 航空动力学报, 2011, 26(3): 588-592.
GUO Jia-liang, WEN Wei-dong, CUI Hai-tao, GAO Jian-hui. Approximate model-based optimum design for wall temperature of floatwall[J]. Journal of Aerospace Power, 2011, 26(3): 588-592.
Citation: GUO Jia-liang, WEN Wei-dong, CUI Hai-tao, GAO Jian-hui. Approximate model-based optimum design for wall temperature of floatwall[J]. Journal of Aerospace Power, 2011, 26(3): 588-592.

基于代理模型的浮动壁式火焰筒壁温优化设计

Approximate model-based optimum design for wall temperature of floatwall

  • 摘要: 为了使得浮动壁结构具有更好的冷却效果,开展了浮动壁壁温优化研究;将代理模型技术与遗传算法相结合,并发展应用于某气动参数下的浮动壁式火焰筒壁温优化设计,使浮动壁的平均壁温降低了2.4%;同时根据构造所得的代理模型,对浮动壁壁温随几何参数的变化规律展开分析,研究了壁温随孔径和冲击间距的变化规律.分析结果表明,在选择的尺寸约束范围内和气动参数条件下,浮动壁结构的冷却效果随着气膜孔直径Dd的增大而变好,随着冲击孔直径Di的减小而变好,随着冲击间距 H的减小而变好.

     

  • [1] Mellor A M.Design of modern turbine combustor[M] .New York:Academic Press,1990.
    [2] 赵清杰,李彬.浮动瓦块冷却结构在燃烧室中的应用和发展[J].燃气涡轮试验与研究,2001,14(1):10-13. ZHAO Qingjie,LI Bin.Application and development of floating panel cooling structure in combustors[J].Gas Turbine Experiment and Research,2001,14(1):10-13.(in Chinese)
    [3] 胡超,许全宏,徐剑,等.冲击/发散冷却壁温分布和冷却效率研究[J].航空动力学报,2008,23(10):1800-1804. HU Chao,XU Quanhong,XU Jian,et al.Investigation of the wall temperature distribution and cooling efficiency for impingement/effusion cooling scheme[J].Journal of Aerospace Power,2008,23(10):1800-1804.(in Chinese)
    [4] 李彬,吉洪湖,江义军.冲击-发散冷却火焰筒浮动瓦片三维壁温计算分析[J].航空动力学报,2007,22(3):370-374. LI Bin,JI Honghu,JIANG Yijun.Numerical analysis of 3D temperature field of an impingement-effusion cooled flame tube floating tile[J].Journal of Aerospace Power,2007,22(3):370-374.(in Chinese)
    [5] 葛继科,邱玉辉,吴春明,等.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911-2916. GE Jike,QIU Yuhui,WU Chunming,et al.Summary of genetic algorithms research[J].Application Research of Computers,2008,25(10):2911-2916.(in Chinese)
    [6] Oyama A,Liou M S,Obayashi S.Transonic axial flow blade shape optimization using evolutionary algorithm and three-dimensional Navier-Stokes solver[J].AIAA 2002-5642,2002.
    [7] YU Yanglai,XIN Yuan.Blade design optimization with three-dimensional viscous analyses and hybrid optimization approach .AIAA-2002-5658,2002.
    [8] Giunta A A.Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods .Virginia:Virginia Polytechnic Institute,1997.
    [9] 薛亮,韩万金.基于遗传算法与近似模型的全局气动优化方法[J].推进技术,2008,29(3):360-366. XUE Liang,HAN Wanjin.Global aerodynamic optimization method using genetic algorithms and surrogate model[J].Journal of Propulsion Technology,2008,29(3):360-366.(in Chinese)
    [10] Giunta A A,Wojtkiewicz S F,Jr,Eldred M S.Overview of modern design of experiments methods for computational simulations[J].AIAA 2003-0649,2003.
    [11] GAO Yuehua,WANG Xicheng.An effeetive warpage optimization method in injection molding based on kriging model[J].Intemational Journal of Advaneed Manufacturing Technology,2008,37(9-10):953-960.
    [12] 李彬,吉洪湖,江义军,等.燃烧室壁冲击-逆向对流-气膜冷却特性的数值研究[J].航空动力学报,2007,22(3):365-369. LI Bin,JI Honghu,JIANG Yijun,et al.Numerical simulation for impingement-counter flow convection-film cooling of a combustor wall[J].Journal of Aerospace Power,2007,22(3):365-369.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1534
  • HTML浏览量:  1
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-09
  • 修回日期:  2010-05-24
  • 刊出日期:  2011-03-28

目录

    /

    返回文章
    返回