留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation of transcritical liquid film cooling in a methane / oxygen rocket engine

YANG Wei SUN Bing

YANG Wei, SUN Bing. Numerical investigation of transcritical liquid film cooling in a methane / oxygen rocket engine[J]. 航空动力学报, 2011, 26(4): 903-916.
引用本文: YANG Wei, SUN Bing. Numerical investigation of transcritical liquid film cooling in a methane / oxygen rocket engine[J]. 航空动力学报, 2011, 26(4): 903-916.
YANG Wei, SUN Bing. Numerical investigation of transcritical liquid film cooling in a methane / oxygen rocket engine[J]. Journal of Aerospace Power, 2011, 26(4): 903-916.
Citation: YANG Wei, SUN Bing. Numerical investigation of transcritical liquid film cooling in a methane / oxygen rocket engine[J]. Journal of Aerospace Power, 2011, 26(4): 903-916.

Numerical investigation of transcritical liquid film cooling in a methane / oxygen rocket engine

Numerical investigation of transcritical liquid film cooling in a methane / oxygen rocket engine

  • 摘要: Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine. The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-dimensional (3-D) flow. The flow field computations were performed using the semi-implicit method for pressure linked equation (SIMPLE) algorithm on several blocks of nonuniform collocated grid. The calculation was conducted over a pressure range of 202650.0 Pa to 1.2×107 Pa and a temperature range of 120.0 K to 3568.0 K. Twenty-nine different cases were simulated to calculate the impact of different factors. The results show that mass flow rate, length, diameter, number and diffused or convergence of film jet channel, injection angle and jet array arrangements have great impact on transcritical film cooling effectiveness. Furthermore, shape of the jet holes and jet and crossflow turbulence also affect the wall temperature distribution. Two rows of film arranged in different axial angles and staggered arrangement were proposed as new liquid film arrangement. Different radial angles have impact on the film cooling effectiveness in two row-jets cooled cases. The case of in-line and staggered arrangement are almost the same in the region before the second row of jets, but a staggered arrangement has a higher film cooling effectiveness from the second row of jets.

     

  • [1] Javadi K H,Taeibi-Rahni M,Darbandi M.Jet-into-crossflow boundary-layer control an innovation in gas turbine blade cooling .AIAA-2005-5272,2005.
    [2] Dellimore K H,Marshall A W,Trouve A,et al.Numerical simulation of subsonic slot-jet film cooling of an adiabatic wall .AIAA-2009-1577-276,2009.
    [3] Dellimore1 K H,Marshall A W,Cadou C P.The influence of compressibility on film cooling effectiveness .AIAA 2008-5032,2008.
    [4] Bladauf S,Schulz A,Witting S.High-resolution measurements of local heat transfer coefficients from discrete hole film cooling[J].Journal of Turbomachinery,2001,123(4):749-757.
    [5] Mayle R E,Camarata F J.Cooling film effectiveness and heat transfer[J].Journal of Heat Transfer,1975,97(4):534-538.
    [6] Haas W,Rodi W,Schnung B,et al.The influence of density difference between hot and coolant gas on film cooling by a rowof holes: prediction and experiments[J].ASME Journal of Turbomachinery,1992,114(4):747-755.
    [7] Nicklas M.Film-cooled turbine endwall in a transonic flowfield Part 2:heat transfer and film-cooling effectiveness[J].Journal of Turbomachinery,2001,123(4):720-729.
    [8] Tucker P K,Warsi S A.Axisymmetric computational fluid dynamics analysis of a film/dump-cooled rocket nozzle plume .AIAA 93-2349,1993.
    [9] Kim S C,Stubbs R M.Numerical study of nozzle wall cooling for nuclear thermal rockets .AIAA-93-2498,1993.
    [10] Knad O,Frohlich A,Wennerberg D.Design supprot for advanced storable propellant engines by ROCFLAM analysis .AIAA-99-2459,1999.
    [11] Knab O,Preclik D,Estublierq D.Flow field prediction within liquid film cooled combustion chambers of storable bi-propellant rocket engines .AIAA-98-3370,1998.
    [12] Goldstein R J,Jin P,Olson R L.Film cooling effectiveness and mass/heat transfer coefficient downstream of one row of discrete holes[J].Journal of Turbomachinery,1999,121(2):225-232.
    [13] Walters D K,Leylek J H.A detailed analysis of film-cooling physics Part I:streamwise injection with cylindrical holes[J].Journal of Turbomachinery,Transactions of the ASME,2000,122(1):102-112.
    [14] ZHANG Wei,GAO Yafu,HE Yaling,et al.Primary research of the liquid film cooling under supercritical[J].Journal of Power Engineering,2005,25(Sup.):742-746.(in Chinese)
    [15] CHEN Jianhua,LU Gang,ZHANG Guitian,et al.Investigation on the effects of injection structure on kerosene supercritical cooling film[J].Journal of Aerospace Power,2008,23(2):336-341.(in Chinese)
    [16] Schoenman L.High pressure propulsion advanced concepts for cooling .IAF 852191,1985.
    [17] Poling B E,Prausnitz J M,O’Connell J P.The properties of gases and liquids[M].5th ed.Beijing: Chemical Industry Press,2006.
    [18] Setzmann U,Wagner W.A new equation of state and tables of thermodynaic properties for methane covering the range from the melting line to 625K at pressures up to 1000MPa[J].Journal of Physical and Chemical Reference Data,1991,20(6):1061-1155.
    [19] Peng D Y,Robinson D B.A new tow-constant equation of state[J].Ind.Eng.Chem.Fundamen.,1976,15(1):59-64.
    [20] Lee B I,Kesler M G.A generalized thermodynamic correlation based on three-parameter corresponding states[J].AIChE Journal,1975,21(3):510-527.
    [21] Millat J,Dymond J H,De Castro C A N.Transport properties of fluids:their correlation,prediction and estimation[M].Cambridge:Cambridge Univeristy Press,1996.
    [22] Chung T H,Ajlan M,Lee L L,et al.Generalized multiparameter correlation for nonpolar and polar fluid transport properties[J].Ind.Eng.Chem.Res.,1988,27(4):671-679.
    [23] Lucas K.Die druckabhngigkeit der viskositt von flüssigkeiten-eine einfache abschtzung [J].Chemie Ingenieur Technik,1981,53(12):959-960.
    [24] Soong H C,Han H W,Chang K C.Comparative numerical studies on Reynolds and Favre averagings of turbulent diffusion flame[J].Journal of Propulsion and Power,1992,8(2):259-263.
    [25] Arnold R,Suslov D,Haidn O J.Influence parameters on film cooling effectiveness in a high pressure subscale combustion chamber .AIAA-2009-0453,2009.
    [26] Kirchberger C,Schlieben G,Hupfer A,et al.Investigation on film cooling in a kerosene/GOX combustion chamber .AIAA-2009-5406,2009.
  • 加载中
计量
  • 文章访问数:  1267
  • HTML浏览量:  1
  • PDF量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-29
  • 修回日期:  2010-05-31
  • 刊出日期:  2011-04-28

目录

    /

    返回文章
    返回