留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传热时间迟滞影响的薄板热气动弹性耦合 振荡模型

李凯伦 张家忠 周振堂

李凯伦, 张家忠, 周振堂. 传热时间迟滞影响的薄板热气动弹性耦合 振荡模型[J]. 航空动力学报, 2011, 26(10): 2237-2244.
引用本文: 李凯伦, 张家忠, 周振堂. 传热时间迟滞影响的薄板热气动弹性耦合 振荡模型[J]. 航空动力学报, 2011, 26(10): 2237-2244.
LI Kai-lun, ZHANG Jia-zhong, ZHOU Zhen-tang. Aerothermoelastic coupling dynamic model of panel flutter with time delay of heat transfer[J]. Journal of Aerospace Power, 2011, 26(10): 2237-2244.
Citation: LI Kai-lun, ZHANG Jia-zhong, ZHOU Zhen-tang. Aerothermoelastic coupling dynamic model of panel flutter with time delay of heat transfer[J]. Journal of Aerospace Power, 2011, 26(10): 2237-2244.

传热时间迟滞影响的薄板热气动弹性耦合 振荡模型

基金项目: 新世纪人才计划(NCET-07-0685)

Aerothermoelastic coupling dynamic model of panel flutter with time delay of heat transfer

  • 摘要: 为了对高超声速下飞行器薄壁结构的振动行为进行研究,建立了一种考虑传热时间迟滞影响的二维无限长薄板的热气动弹性耦合振荡模型.同时,给出了只考虑有限历史时间影响的板内温度分布表达式,并对提出的温度表达式的精确性进行了数学证明,从而将以往被忽略掉的热应力产生的板内力矩引入薄板振动方程.数值模拟结果表明:气动力是薄板振动的主要驱动力,板内力的作用相当于外部预紧力,而板内力矩的变化会驱使薄板进行小振幅振动.综合以上三种因素,对薄板在这三种因素耦合情况下的振动行为进行了研究,发现在来流马赫数较大时,薄板会进入十分复杂的振动状态.最后,通过非线性动力学理论对薄板的振动行为进行了分析,发现了薄板振动中的分岔、混沌等现象,以及通向该类现象的途径.

     

  • [1] Dowell E H.Nonlinear oscillations of a fluttering plate[J].AIAA Journal,1966,4(7):1267-1275.
    [2] Dowell E H.Nonlinear oscillations of a fluttering plate Ⅱ:quasi-steady aerodynamic and Von Karman large deflection plate theory equations of nonlinear oscillations of fluttering plate for single mode subsonic and sonic or coupled mode supersonic oscillations[J].AIAA Journal,1967,5(10):1856-1862.
    [3] Librescu L.Linear/nonlinear supersonic panel flutter in a high-temperature field[J].Journal of Aircraft,2004,41(4):918-924.
    [4] Pourtakdoust S H,Fazelzadeh S A.Nonlinear aerothermoelastic behavior of skin panel with wall shear stress effect[J].Journal of Thermal Stress,2005,28(2):147-169.
    [5] Shubov M A.Flutter phenomennon in aeroelasticity and its mathematical analysis[J].Journal of Aerospace Engineering,2006,19(1):1-12.
    [6] Sipcic S R.The chaotic response of a fluttering panel:the influence of maneuvering[J].Nonlinear Dynamics,1990,1(3):243-264.
    [7] Sipcic S R,Morino L.Dynamic behavior of the fluttering panel on a maneuvering airplane[J].AIAA Journal,1991,29(8):1304-1312.
    [8] Gee D J,Sipcic S R.Coupled thermal model for nonlinear panel flutter[J].AIAA Journal,1999,37(5):642-650.
    [9] LI Kailun,ZHANG Jiazhong,LEI Pengfei.Simulation and nonlinear analysis of panel flutter with thermal effects in supersonic flow[M]//Dynamical Systems.New York:Springer,2010:61-76.
    [10] Schlichting H.Boundary-layer theory[M].New York:McGraw-Hill,1979.
    [11] Ashley H,Zartarian G.Piston theory:a new aerodynamic tool for the aeroelastician[J].Journal of the Aeronautical Sciences,1956,23(12):1109-1118.
    [12] Hildebrand F B.Advanced calculus for applications[M].Englewood Cliffs,NJ:Prentice-Hall,1976.
  • 加载中
计量
  • 文章访问数:  1241
  • HTML浏览量:  1
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-26
  • 修回日期:  2011-03-12
  • 刊出日期:  2011-10-28

目录

    /

    返回文章
    返回