留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢制叶片激光冲击强化与渗铝的组合应用

李应红 李伟 何卫锋 李玉琴 李启鹏

李应红, 李伟, 何卫锋, 李玉琴, 李启鹏. 钢制叶片激光冲击强化与渗铝的组合应用[J]. 航空动力学报, 2011, 26(11): 2409-2415.
引用本文: 李应红, 李伟, 何卫锋, 李玉琴, 李启鹏. 钢制叶片激光冲击强化与渗铝的组合应用[J]. 航空动力学报, 2011, 26(11): 2409-2415.
LI Ying-hong, LI Wei, HE Wei-feng, LI Yu-qin, LI Qi-peng. Laser shock processing and aluminizing compound technology used on steel blade[J]. Journal of Aerospace Power, 2011, 26(11): 2409-2415.
Citation: LI Ying-hong, LI Wei, HE Wei-feng, LI Yu-qin, LI Qi-peng. Laser shock processing and aluminizing compound technology used on steel blade[J]. Journal of Aerospace Power, 2011, 26(11): 2409-2415.

钢制叶片激光冲击强化与渗铝的组合应用

Laser shock processing and aluminizing compound technology used on steel blade

  • 摘要: 采用扫描电子显微镜(SEM),X射线衍射(XRD)等手段研究了激光冲击强化(LSP)对钢制叶片渗铝层的影响,结果表明渗铝后进行激光冲击强化会对渗铝层造成破环,而在渗铝之前进行激光冲击强化则能提高渗层质量.从残余应力和显微组织变化两方面分析了渗铝高温作用对不锈钢材料激光冲击强化效果的影响,激光冲击强化产生的残余压应力在510℃渗铝温度环境下保温150min仍有-295MPa稳定存在,晶粒细化组织也没有明显长大,激光冲击不锈钢材料的残余应力和微观组织具有良好的热稳定性.振动疲劳对比试验结果验证了“LSP+渗铝”组合工艺对不锈钢材料的强化效果,在660MPa应力水平下,采用该组合工艺试片的疲劳寿命为3.98×106,为原渗铝试片疲劳寿命的14倍左右.

     

  • [1] 航空制造工程手册总编委会.航空制造工程手册发动机叶片工艺[M].北京:航空工业出版社,1997.
    [2] 陶春虎,钟培道,王仁智,等.航空发动机转动部件的失效与预防[M].北京:国防工业出版社,2000.
    [3] 李伟,何卫锋,李应红,等.激光冲击强化对K417材料振动疲劳性能的影响[J].中国激光,2009,36(8):2197-2201. LI Wei,HE Weifeng,LI Yinghong,et al.Effects of laser shock processing on vibration fatigue properties of K417 material[J].Chinese Journal of Lasers,2009,36(8):2197-2201.(in Chinese)
    [4] 李伟,李应红,何卫锋,等.激光冲击强化技术的发展和应用[J].激光与光电子学进展,2008,45(12):15-19. LI Wei,LI Yinghong,HE Weifeng, et al.Development and application of laser shock processing [J].Laser & Optoelectronics Progress,2008,45(12):15-19.(in Chinese)
    [5] Fairand B P,Clauer A H.Laser generation of high-amplitude stress waves in materials[J].Appl. Phys.,1979,50(3):1497-1502.
    [6] Richard D T,David F L.Preventing fatigue failures with laser peening[J].The Amptiac Quarterly,2003,7(2):3-7.
    [7] Thomas M B.Universal technology corporation high cycle fatigue (HCF) science and technology program 2002 annual report .Dayton,OH:Universal Technology Corporation,AFRL-PR-WP-TM-2004-2040,2003.
    [8] Michael R H,Adrian T D,Anne G D,et al.Laser peening technology[J].Advanced Materials & Processes,2003,161(8):65-71.
    [9] Yang J M,Her Y C,Clauer A H.Laser shock peening on fatigue behavior of 2024-T6 Al alloy with fastener holes and stop holes[J].Material Science Engineer A,2001,298:296-299.
    [10] Meyers.材料的动力学行为[M].张庆明,刘彦,黄风雷,等译.北京:国防工业出版社,2006.
    [11] 李华飞,俞敦义,郑家燊.热浸镀铝钢的性能及用途[J].材料保护,2001,34(5):21-23. LI Huafei,YU Dunyi,ZHENG Jiashen.The performance and usage of the hot-dip auluminizing steel[J].Materials Protection,2001,34(5):21-23.(in Chinese)
    [12] 葛利玲,卢正欣,井晓天,等.0Cr18Ni9不锈钢表面纳米化组织及其热稳定性对低温渗氮行为的影响[J].金属学报,2009,45(5):566-572. GE Liling,LU Zhengxin,JING Xiaotian,et al.Effect of surface nanocrystallization and thermal stability of 0Cr18Ni9 stainless steel on low temperature nitriding behavior[J].Acta,Metallurgica Sinica,2009,45(5):566-572.(in Chinese)
    [13] 张定铨,何家文.材料中残余应力的X射线衍射分析和作用[M].西安:西安交通大学出版社,1999.
    [14] 王磊.材料的力学性能[M].沈阳:东北大学出版社,2005.
    [15] HE Weifeng,LI Yinghong,QI Pengli.The effects of laser shock peening on fatigue life in Ni-based superalloy[J].Advanced Materials Research,2010,135:209-214.
  • 加载中
计量
  • 文章访问数:  1491
  • HTML浏览量:  1
  • PDF量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-13
  • 修回日期:  2011-02-12
  • 刊出日期:  2011-11-28

目录

    /

    返回文章
    返回