留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

侧载和管径对管内沸腾两相流性能影响实验

单绍荣 宋保银 马启成

单绍荣, 宋保银, 马启成. 侧载和管径对管内沸腾两相流性能影响实验[J]. 航空动力学报, 2011, 26(11): 2522-2527.
引用本文: 单绍荣, 宋保银, 马启成. 侧载和管径对管内沸腾两相流性能影响实验[J]. 航空动力学报, 2011, 26(11): 2522-2527.
SHAN Shao-rong, SONG Bao-yin, MA Qi-cheng. Experiment on the effects of side load and pipe diameter on the characteristics of boiling two-phase pipe flow[J]. Journal of Aerospace Power, 2011, 26(11): 2522-2527.
Citation: SHAN Shao-rong, SONG Bao-yin, MA Qi-cheng. Experiment on the effects of side load and pipe diameter on the characteristics of boiling two-phase pipe flow[J]. Journal of Aerospace Power, 2011, 26(11): 2522-2527.

侧载和管径对管内沸腾两相流性能影响实验

基金项目: 国家自然科学基金项目(50576035); 高等学校博士学科点专项科研基金项目(20040287017)

Experiment on the effects of side load and pipe diameter on the characteristics of boiling two-phase pipe flow

  • 摘要: 为研究飞行过程中侧向载荷对不同管径内沸腾两相流流动和传热的影响,在自行搭建的实验平台上做了多次实验.通过对实验段内流体的压差、雷诺数、孔隙率、热流密度及传热系数等参数数据的处理分析,研究了侧载和管径对管内沸腾两相流性能的影响.结果表明,动载越大,管内压差越大,管外散热越强,流体流量越小,空隙率越低,流体得热的热流密度越低.动载荷加强了单相流的表面传热系数;但对于沸腾两相流有一个先抑制再增强最后削弱的过程.管径对雷诺数、压差、孔隙率、散热能力等也有显著的影响,较小的管径流动阻力较大,而换热能力则有所提升.

     

  • [1] 中国工程热物理学会.中国科学技术协会.工程热物理学科发展报告[M].北京:中国科学技术出版社,2007-2008.
    [2] Pettersen J.Flow vaporization of CO2 in microchannel tubes[J].Experimental Thermal and Fluid Science,2004,28(2-3):111-121.
    [3] Yu W,France D M,Wambsganss M W,et al.Two-phase pressure drop,boiling heat transfer,and critical heat flux to water in a small-diameter horizontal tube[J].Int. J. Multiphase Flow,2002,28(6):927-941.
    [4] 甘云华,徐进良,周继军,等.微尺度相变传热的关键问题[J]. 力学进展,2004,34(3):399-407. GAN Yunhua,XU Jinliang,ZHOU Jijun,et al.Key issues related to microscale phase change heat transfer[J].Advances in Mechanics,2004,34(3):399-407.(in Chinese)
    [5] 赵鹏飞,毕勤成,杨朝初,等.微小圆通道内流动沸腾换热特性的研究[J].工程热物理学报,2005,26(5):802-804. ZHAO Pengfei,BI Qincheng,YANG Zhaochu,et al.Flow boiling heat transfer inside miniature channels[J].Journal of Engineering Thermophysics,2005,26(5):802-804.(in Chinese)
    [6] Ohta H,Kawasaki K,Okada S,et al.On the heat transfer mechanisms in microgravity nucleate boiling[J].Advances in Space Research,1999,24(10):1325-1330.
    [7] Straub J.Microscale boiling heat transfer under 0g and 1g condition [J].Int.J.Thermal Sciences,2000,39(4):490-497.
    [8] Ma Y,Chung J N.An experimental study of critical heat flux (CHF) in microgravity forced-convection boiling[J].Int. J. Multiphase Flow,2001,27(10):1753-1767.
    [9] Seghir-Ouali S,Saury D,Harmand S,et al.Convective heat transfer inside a rotating cylinder with an axial air flow[J].Int. J. Thermal Sciences,2006,45(12):1166-1178.
    [10] Chiu H C,Jang J H,Yan W M.Combined mixed convection and radiation heat transfer in rectangular ducts rotating about a parallel axis[J].Int.J.Heat and Mass Transfer,2007,50(21-22):4229-4242.
    [11] Song F,Ewing D, Ching C Y.Experimental investigation on the heat transfer characteristics of axial rotating heat pipes[J].Int. J. Heat and Mass Transfer,2004,47(22):4721- 4731.
    [12] Khan W I.Heat transfer and flow instability in a superconducting machine rotating at 3000rpm[J].Cryogenics,1984, 24(1):11-14.
    [13] Wiesche S.Heat transfer from a rotating disk in a parallel air crossflow[J].Int.J.Thermal Sciences,2007,46(8):745-754.
    [14] Silk E A,Golliher E L,Selvam R P.Spray cooling heat transfer:technology overview and assessment of future challenges for micro-gravity application[J].Energy Conversion and Management,2008,49(3):453-468.
    [15] Kim J.Spray coolingheat transfer:the state of the art[J]. International Journal of Heat and Fluid Flow,2007,28(4):753-767.
    [16] Hurlbert K M,Witte L C,Best F R,et al.Scaling two-phase flows to Mars and Moon gravity conditions[J].Int. J. Multiphase Flow,2004,30(4):351-368.
    [17] 张志涌,杨祖樱.MATLAB教程[M].北京:北京航空航天大学出版社,2006.
  • 加载中
计量
  • 文章访问数:  1621
  • HTML浏览量:  1
  • PDF量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-21
  • 修回日期:  2011-03-14
  • 刊出日期:  2011-11-28

目录

    /

    返回文章
    返回