留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SVR-PSO改进算法的航空发动机稳定性控制

王磊 谢寿生 蒋爱武 苗卓广 翟旭升

王磊, 谢寿生, 蒋爱武, 苗卓广, 翟旭升. 基于SVR-PSO改进算法的航空发动机稳定性控制[J]. 航空动力学报, 2012, 27(2): 438-444.
引用本文: 王磊, 谢寿生, 蒋爱武, 苗卓广, 翟旭升. 基于SVR-PSO改进算法的航空发动机稳定性控制[J]. 航空动力学报, 2012, 27(2): 438-444.
WANG Lei, XIE Shou-sheng, JIANG Ai-wu, MIAO Zhuo-guang, ZHAI Xu-sheng. Aero-engine stability seeking control based on improved SVR-PSO[J]. Journal of Aerospace Power, 2012, 27(2): 438-444.
Citation: WANG Lei, XIE Shou-sheng, JIANG Ai-wu, MIAO Zhuo-guang, ZHAI Xu-sheng. Aero-engine stability seeking control based on improved SVR-PSO[J]. Journal of Aerospace Power, 2012, 27(2): 438-444.

基于SVR-PSO改进算法的航空发动机稳定性控制

Aero-engine stability seeking control based on improved SVR-PSO

  • 摘要: 在多变量发动机寻优控制中,用支持向量回归算法(SVR)对粒子群优化算法(PSO)进行改进可以有效避免局部最优解的出现.将改进算法应用于航空发动机实时稳定性控制,根据发动机仿真计算程序计算出发动机在各工作点处的稳定裕度,根据控制参数的变化域进行全局寻优,寻找满足压缩系统稳定裕度最小的工作点.仿真和分析表明:该算法实时性高,收敛速度快,具有较强的全局寻优能力,能在保证发动机稳定裕度最小的同时有效降低涡轮前温度和耗油率.

     

  • [1] 刘大响,叶培梁,胡骏,等.航空燃气涡轮发动机稳定性设计与评定技术[M].北京:航空工业出版社,2004.
    [2] Orme J S,DeLaat J C,Southwick R D,et al.Development and testing of a high stability engine control(HISTEC) system.NASA/TM-1998-206562,1998.
    [3] Southwick R D,Gallops G W,Kerr L J,et al.High stability engine control (HISTEC) flight test results.AIAA- 1998-3757,1998.
    [4] DeLaat J C,Southwick R D,Gallops G W,et al.The high stability engine control (HISTEC) program-flight demonstration phase.AIAA-1998-3756,1998.
    [5] DeLaat J C,Southwick R D,Gallops G W.High stability engine control (HISTEC).AIAA-1996-2586,1996.
    [6] 蒋爱武.飞机推进系统综合性能寻优及稳定性控制研究.西安:空军工程大学,2010. JIANG Aiwu.Research of aero-engine performance seeking control and stability seeking control.Xi’an:Air Force Engineering University,2010.(in Chinese)
    [7] Kennedy J,Eberhart R C.Particle swarm optimization //Proceedings of the IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995:1942-1948.
    [8] Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization //Proceedings of the 7th Annual Conference on Evolutionary Programming.San Diego:IEEE, 1998:97-102.
    [9] Shi Y H,Eberhart R.Empirical study of particle swarm optimization //Proceedings of the IEEE Congress on Evolutionary Computation.Washington D C,US:IEEE,1999:1945-1950.
    [10] Smola A J,Scholkopf B.A tutorial on support vector regression.NeuroCOLT TR-98-030,1998.
    [11] Burges C J C.A Tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
    [12] Cortex C,Vapnic V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
    [13] 孙德山,吴金培.支持向量回归中的预测信任度[J].计算机科学,2003,30(8):126-127. SUN Deshan,WU Jinpei.Predicting credibility based on support vector regression[J].Journal of Computer Science,2003,30(8):126-127.(in Chinese)
    [14] 蒋爱武,谢寿生.基于支持向量机和粒子群算法的压气机特性计算[J].航空动力学报,2010,25(11):2571-2577. JIANG Aiwu,XIE Shousheng.Method to achieve compressor characteristics maps based on SVM and PSO[J].Journal of Aerospace Power,2010,25(11):2571-2577.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1436
  • HTML浏览量:  5
  • PDF量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-12
  • 修回日期:  2011-09-01
  • 刊出日期:  2012-02-28

目录

    /

    返回文章
    返回