基于SVR-PSO改进算法的航空发动机稳定性控制
Aero-engine stability seeking control based on improved SVR-PSO
-
摘要: 在多变量发动机寻优控制中,用支持向量回归算法(SVR)对粒子群优化算法(PSO)进行改进可以有效避免局部最优解的出现.将改进算法应用于航空发动机实时稳定性控制,根据发动机仿真计算程序计算出发动机在各工作点处的稳定裕度,根据控制参数的变化域进行全局寻优,寻找满足压缩系统稳定裕度最小的工作点.仿真和分析表明:该算法实时性高,收敛速度快,具有较强的全局寻优能力,能在保证发动机稳定裕度最小的同时有效降低涡轮前温度和耗油率.Abstract: In the seeking control of multivariable aero-engine,general optimization algorithm may find the locally optimal solution.An improved algorithm based on particle swarm optimization (PSO) and support vector regression (SVR) was applied to aero-engine stability seeking control,setting the lower limits for surge margin to keep aero-engine working stably.The working point with minimum surge margin was searched globally.The simulation results show that the designed stability control algorithm could reduce the surge margin while keeping the thrust constant and reduce the turbine inlet temperature and specific fuel consumption effectively.
-
[1] 刘大响,叶培梁,胡骏,等.航空燃气涡轮发动机稳定性设计与评定技术[M].北京:航空工业出版社,2004. [2] Orme J S,DeLaat J C,Southwick R D,et al.Development and testing of a high stability engine control(HISTEC) system.NASA/TM-1998-206562,1998. [3] Southwick R D,Gallops G W,Kerr L J,et al.High stability engine control (HISTEC) flight test results.AIAA- 1998-3757,1998. [4] DeLaat J C,Southwick R D,Gallops G W,et al.The high stability engine control (HISTEC) program-flight demonstration phase.AIAA-1998-3756,1998. [5] DeLaat J C,Southwick R D,Gallops G W.High stability engine control (HISTEC).AIAA-1996-2586,1996. [6] 蒋爱武.飞机推进系统综合性能寻优及稳定性控制研究.西安:空军工程大学,2010. JIANG Aiwu.Research of aero-engine performance seeking control and stability seeking control.Xi’an:Air Force Engineering University,2010.(in Chinese) [7] Kennedy J,Eberhart R C.Particle swarm optimization //Proceedings of the IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995:1942-1948. [8] Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization //Proceedings of the 7th Annual Conference on Evolutionary Programming.San Diego:IEEE, 1998:97-102. [9] Shi Y H,Eberhart R.Empirical study of particle swarm optimization //Proceedings of the IEEE Congress on Evolutionary Computation.Washington D C,US:IEEE,1999:1945-1950. [10] Smola A J,Scholkopf B.A tutorial on support vector regression.NeuroCOLT TR-98-030,1998. [11] Burges C J C.A Tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. [12] Cortex C,Vapnic V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. [13] 孙德山,吴金培.支持向量回归中的预测信任度[J].计算机科学,2003,30(8):126-127. SUN Deshan,WU Jinpei.Predicting credibility based on support vector regression[J].Journal of Computer Science,2003,30(8):126-127.(in Chinese) [14] 蒋爱武,谢寿生.基于支持向量机和粒子群算法的压气机特性计算[J].航空动力学报,2010,25(11):2571-2577. JIANG Aiwu,XIE Shousheng.Method to achieve compressor characteristics maps based on SVM and PSO[J].Journal of Aerospace Power,2010,25(11):2571-2577.(in Chinese)
点击查看大图
计量
- 文章访问数: 1436
- HTML浏览量: 5
- PDF量: 435
- 被引次数: 0