留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性机翼承载能力的试验与预测

王志飞 王华 王伟 贾青萍

王志飞, 王华, 王伟, 贾青萍. 柔性机翼承载能力的试验与预测[J]. 航空动力学报, 2012, 27(6): 1243-1248.
引用本文: 王志飞, 王华, 王伟, 贾青萍. 柔性机翼承载能力的试验与预测[J]. 航空动力学报, 2012, 27(6): 1243-1248.
WANG Zhi-fei, WANG Hua, WANG Wei, JIA Qin-ping. Experimental and prediction study for bearing capacity of inflatable wing[J]. Journal of Aerospace Power, 2012, 27(6): 1243-1248.
Citation: WANG Zhi-fei, WANG Hua, WANG Wei, JIA Qin-ping. Experimental and prediction study for bearing capacity of inflatable wing[J]. Journal of Aerospace Power, 2012, 27(6): 1243-1248.

柔性机翼承载能力的试验与预测

基金项目: 航天基金(CASC0105)

Experimental and prediction study for bearing capacity of inflatable wing

  • 摘要: 对柔性机翼进行了承载能力的试验及预测研究,首先对柔性机翼的翼型结构进行建模,并对充气机翼的结构进行了分析和优化;其次应用正交试法确定出影响柔性机翼承载能力的主要影响因素,以优化后的结果建立实物模型和主要影响因素为变量进行试验;最后以大量的试验数据为训练样本建立改进的神经网络模型,并进行承载能力预测.试验与预测结果对比研究表明:在初始阶段,柔性机翼在压强一定时,载荷与挠度近似呈线性关系;在同一气压值下,载荷增加到一定值时,载荷与挠度的关系曲线呈近似线性关系,而是斜率突然减小;神经网络测试值和试验实测值最大相对误差与标准方差只有12%和0.39%,人工神经网络解析方法可以用于对充气机翼抗弯刚度的分析.

     

  • [1] 李占科,徐顶国,牛文.不同柔度的柔性翼气动特性试验[J] .航空动力学报,2011,26(1):136-140. LI Zhanke,XU Dinguo,NIU Wen.Investigation on aerodynamic characteristics of flexible wing with different flexibilities[J].Journal of Aerospace Power,2011,26(1):136-140.(in Chinese)
    [2] Usui M,Simpson A,Smith S,et al.Development and flight testing of a UAV with inflatable/rigidizable wings .AIAA 2004-1373,2004.
    [3] Simpson A,Rawashdeh O,Jacob J,et al.Flying on air:UAV flight testing with inflatable wing technology .AIAA 2004-6570,2004.
    [4] Cadogan D,Smith T,Uhelsky F,et al.Morphing inflatable wing development for compact package unmanned aerial vehicles .AIAA 2004-1807,2004.
    [5] Allred R E,Hoyt A E,Harrah L A,et al.Light curing rigidizable inflatable wing .AAIA 2004-1809,2004.
    [6] Allred R E,Hoyt A E,Harrah L A,et al.Light rigidizable inflatable wings for UAVS:resin and manufacturing development .AIAA 2005-1882,2005.
    [7] Simpson A,Coulombe N,Jacob J,et al.Morphing of inflatable wings .AIAA 2004-1503,2004.
    [8] Kearns J D,Usui M,Smith S W,et al.Development of U V-curable inflatable wings for low-density flight applications .AIAA 2004-1503,2004.
    [9] 吕强,叶正寅,李栋.充气结构机翼的设计和试验研究[J].飞行力学,2007,25(4):77-80. LV Qiang,YE Zhengyin,LI Dong.Design and capability analysis of an aircraft with inflatable wing[J].Flight Dynamics,2007,25(4):77-80.(in Chinese)
    [10] 王伟,王华,贾青萍.充气机翼承载能力和气动特性分析[J] .航空动力学报,2010, 25(10):2296-2301. WANG Wei,WANG Hua,JIA Qinping.Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J].Journal of Aerospace Power,2010, 25(10):2296-2301.(in Chinese)
    [11] 王志飞,王华,贾青萍,等.基于人工神经网络的柔性机翼挠度预测[J] .北京航空航天大学学报,2011,37(4):405-408. WANG Zhifei,WANG Hua,JIA Qinping,et al.Flexural rigidity prediction for inflatable wing based on BP neural network[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(4):405-408.(in Chinese)
    [12] 贾青萍.充气机翼的结构设计与性能分析 .北京:北京航空航天大学,2008. JIA Qingping.Structure design and performance analysis of inflatable wings .Beijing:Beijing University of Aeronautics and Astronautics,2008.(in Chinese)
    [13] 王越,曹长修.BP网络局部极小产生的原因分析及避免[J].计算机工程,2002,28(6):35-37. WANG Yue,CAO Changxiu.Analysis of local minimization for BP algorithm and its avoidance methodes[J].Computer Engineering,2002,28(6):35-37.(in Chinese)
    [14] 张丹,张卫红.基于铸件热应力及变形的人工神经网络和遗传算法优化方法[J].航空学报,2006,27(4):697-702. ZHANG Dan,ZHANG Weihong.Optimization of thermal stress by neural and deformation of the casting during solidification network and genetic algorithm[J].Acta Aeronautica et Astronautica Sinica,2006,27(4):697-702.(in Chinese)
    [15] LIU Bin,PAN Fusheng,ZHANG Jing,et al.Improvement and application of neural network models in development of wrought magnesium alloys[J].Transaction of Nonferrous Metals Society of China,2011,34(3):44-48.
  • 加载中
计量
  • 文章访问数:  1448
  • HTML浏览量:  1
  • PDF量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-05
  • 刊出日期:  2012-06-28

目录

    /

    返回文章
    返回