留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固液火箭发动机工作过程三维数值仿真

李新田 田辉 曾鹏 蔡国飙

李新田, 田辉, 曾鹏, 蔡国飙. 固液火箭发动机工作过程三维数值仿真[J]. 航空动力学报, 2012, 27(6): 1398-1404.
引用本文: 李新田, 田辉, 曾鹏, 蔡国飙. 固液火箭发动机工作过程三维数值仿真[J]. 航空动力学报, 2012, 27(6): 1398-1404.
LI Xin-tian, TIAN Hui, ZENG Peng, CAI Guo-biao. Three-dimensional numerical simulation of hybrid rocket motor operation process[J]. Journal of Aerospace Power, 2012, 27(6): 1398-1404.
Citation: LI Xin-tian, TIAN Hui, ZENG Peng, CAI Guo-biao. Three-dimensional numerical simulation of hybrid rocket motor operation process[J]. Journal of Aerospace Power, 2012, 27(6): 1398-1404.

固液火箭发动机工作过程三维数值仿真

Three-dimensional numerical simulation of hybrid rocket motor operation process

  • 摘要: 根据固体燃料壁面与气相间的流固耦合得出了固体燃料燃速模型,对采用星形装药的H2O2/HTPB(hydroxyl-terminated polybutadiene)固液火箭发动机进行了燃烧流动三维数值仿真,得到了流场参数的分布及不同位置的固体燃料燃速,与二维轴对称仿真结果进行了对比.计算结果表明:装药截面的火焰层形状与装药星孔型面形状相似,但火焰层厚度与位置在星根与星角处存在差异;随着轴向位置的增加,氧化剂不断消耗,火焰层向通道中心移动;固体燃料燃速与氧化剂流率及不同装药位置有关,其大小随氧化剂流率的增加而增加,星根处燃速比星角处大;在相同氧化剂流率下,三维星形装药比二维轴对称装药的平均固体燃料燃速大.

     

  • [1] Chiaverini M J,Kuo K K.Fundamentals of hybrid rocket combustion and propulsion[M].VA:Progress in Astronautics and Aeronautics,2006.
    [2] Tsohas J,Appel B,Rettenmaier A,et al.Development and launch of the Purdue hybrid rocket technology demonstrator .AIAA 2009-4842,2009.
    [3] Dyer J,Doran E,Dunn Z,et al.Design and development of a 100 km nitrous oxide/paraffin hybrid rocket vehicle .AIAA 2007-5362,2007.
    [4] Evans B,Boyer E,Kuo K K.Hybrid rocket investigations at Penn State University’s high pressure combustion laboratory:overview and recent results. .AIAA 2009-5349,2009.
    [5] Marxman G A,Wooldridge C E,Muzzy R J.Fundamentals of hybrid boundary layer combustion //Wolfhard H G.Heterogeneous combustion.NY:AIAA Progress in Astronautics and Aeronautics,1964:485-521.
    [6] Kim H J,Kim Y M.Numerical modeling for combustion processed of hybrid rocket engine .AIAA 2001-4504,2001.
    [7] Venkateswaran S,Merkle C L.Size scale-up in hybrid rocket motors .AIAA 96-0647,1996.
    [8] Chien K.Predictions of channel and boundary layer flows with a low-Reynolds number turbulence model[J].AIAA Journal,1982,20(1):33-38.
    [9] CAI Guobiao,TIAN Hui.Numerical simulation of the operation process of a hybrid rocket motor .AIAA 2006-4506,2006.
    [10] Cheng G C,Farmer R C,Jones H S,et al.Numerical simulation of the internal ballistics of a hybrid rocket motor .AIAA-94-0554,1994.
    [11] 田辉,蔡国飙,王慧玉,等.固液混合火箭发动机固体燃料的燃速计算[J].北京航空航天大学学报,2005,31(6):637-641. TIAN Hui,CAI Guobiao,WANG Huiyu,et al.Computation of fuel regression rate in classical hybrid rocket motors[J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(6):637-641.(in Chinese)
    [12] 杨玉新,胡春波,孙得川,等.基于流-固耦合的混合火箭发动机固体燃料表面退移速率计算[J].固体火箭技术,2007,29(5):214-218. YANG Yuxin,HU Chunbo,SUN Dechuan,et al.Regression rate calculation for the solid fuel surface of hybrid rocket motor based on fluid-solid coupling technique[J].Journal of Solid Rocket Technology,2007,29(5):214-218.(in Chinese)
    [13] Chiaverini M J,Harting G C,Lu Y C,et al.Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions .AIAA 1997-3078,1997.
  • 加载中
计量
  • 文章访问数:  1658
  • HTML浏览量:  1
  • PDF量:  619
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-14
  • 刊出日期:  2012-06-28

目录

    /

    返回文章
    返回