留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FGH97缺口试样基于黏塑性本构的弹塑性响应分析

袁善虎 魏大盛 王延荣

袁善虎, 魏大盛, 王延荣. FGH97缺口试样基于黏塑性本构的弹塑性响应分析[J]. 航空动力学报, 2012, 27(10): 2348-2355.
引用本文: 袁善虎, 魏大盛, 王延荣. FGH97缺口试样基于黏塑性本构的弹塑性响应分析[J]. 航空动力学报, 2012, 27(10): 2348-2355.
YUAN Shan-hu, WEI Da-sheng, WANG Yan-rong. Analysis of elastoplastic response in FGH97 notched specimens based on viscoplastic constitutive model[J]. Journal of Aerospace Power, 2012, 27(10): 2348-2355.
Citation: YUAN Shan-hu, WEI Da-sheng, WANG Yan-rong. Analysis of elastoplastic response in FGH97 notched specimens based on viscoplastic constitutive model[J]. Journal of Aerospace Power, 2012, 27(10): 2348-2355.

FGH97缺口试样基于黏塑性本构的弹塑性响应分析

Analysis of elastoplastic response in FGH97 notched specimens based on viscoplastic constitutive model

  • 摘要: 针对缺口试样在高温条件下局部区域应力应变难于测量的问题,基于光滑试样材料力学性能试验,优化得到550℃粉末高温合金FGH97的Chaboche黏塑性统一本构方程参数,并将其应用到FGH97缺口试样单调拉伸及循环加载弹塑性有限元分析中.研究结果表明:①缺口局部区域进入塑性后其应力分布与弹性条件明显不同,随应力增大,最大应力位置向内移动;②在循环载荷条件下,随着循环数的增加,缺口平分线上应力/应变范围变化不大,缺口根部塑性区域出现明显平均应力松弛,并逐渐趋于稳定,导致缺口根部循环载荷比不同于外部施加载荷;③缺口根部塑性区域逐渐增大,但增大的幅度逐渐降低.该研究可为进一步分析缺口构件疲劳寿命影响因素提供支持.

     

  • [1] Pfouts W R,Shamblen C E,Mosier J S,et al.Materials for advanced turbine engines:volume 1 power metallurgy rene 95 rotating turbine engine Parts .NASA-CR-159802,1979.
    [2] 邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报,2006,26(3):244-250. ZOU Jinwen,WANG Wuxiang.Development and application of P/M superalloy[J].Journal of aeronautical materials,2006,26(3):244-250.(in Chinese)
    [3] 王元清,武延民,石永久,等.含缺口受拉平板塑性应力场的有限元分析[J].工程力学,2007,24(4):7-12. WANG Yuanqing,WU Yanmin,SHI Yongjiu,et al.FEM analysis for plastic stress field of tensile flat slab with crackles[J].Engineering Mechanics,2007,24(4):7-12.(in Chinese)
    [4] Filippini M.Stress gradient calculations at notches[J].International Journal of Fatigue,2000,22(5):397-409.
    [5] Adib-Ramezani H,Jeong J.Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots[J].Computational Materials Science,2007,39(3):649-663.
    [6] 王仁,熊祝华,黄文斌.塑性力学基础[M].北京:科学出版社,1982:134-140.
    [7] Chaboche J L.Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J].International Journal of Plasticity,1989,5(3):247-302.
    [8] 石多奇.热端部件材料先进粘塑性本构理论与高温多轴疲劳理论研究 .北京:北京航空航天大学,2004. SHI Duoqi.Viscoplastic constitutive modeling and multiaxial fatigue life prediction of nickel-based superalloy at elevated temperature .Beijing:Beijing University of Aeronautics and Astronautics,2007.(in Chinese)
    [9] 魏大盛.FGH95粉末高温合金的变形特征及疲劳性能研究 .北京:北京航空航天大学,2006. WEI Dasheng.Investigation on deformation and fatigue characteristic of powder metallurgy superalloy FGH95 .Beijing:Beijing University of Aeronautics and Astronautics,2007.(in Chinese)
    [10] Lu F,XU J Q.Evaluation of cyclic inelastic response in fretting based on unified Chaboche model[J].International Journal of Fatigue,2005,27(9):1062-1075.
    [11] Susmel L.The theory of critical distances:a review of its applications in fatigue[J].Engineering Fracture Mechanics,2008,75(7):1706-1724.
    [12] Yamashita Y,Ueda Y,Kuroki H,et al.Fatigue life prediction of small notched Ti-6AL-4V specimens using critical distance[J].Engineering Fracture Mechanics,2010,77(9):1439-1453.
    [13] Susmel L,Taylor D.An elasto-plastic reformulation of the theory of critical distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime[J].Journal of Engineering Materials and Technology,2010,132(2):021002.1-021002.8.
    [14] Qylafku G,Azari Z,Gjonaj M,et al.On the fatigue failure and life prediction for notched specimens[J].Materials Science,1998,34(5):604-618.
  • 加载中
计量
  • 文章访问数:  1724
  • HTML浏览量:  1
  • PDF量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-13
  • 刊出日期:  2012-10-28

目录

    /

    返回文章
    返回