留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹腔尺寸对迎风凹腔与逆向喷流组合热防护系统性能的影响

陆海波 刘伟强

陆海波, 刘伟强. 凹腔尺寸对迎风凹腔与逆向喷流组合热防护系统性能的影响[J]. 航空动力学报, 2012, 27(12): 2666-2673.
引用本文: 陆海波, 刘伟强. 凹腔尺寸对迎风凹腔与逆向喷流组合热防护系统性能的影响[J]. 航空动力学报, 2012, 27(12): 2666-2673.
LU Hai-bo, LIU Wei-qiang. Effect of cavity physical dimension on forward-facing cavity and opposing jet thermal protection system cooling efficiency[J]. Journal of Aerospace Power, 2012, 27(12): 2666-2673.
Citation: LU Hai-bo, LIU Wei-qiang. Effect of cavity physical dimension on forward-facing cavity and opposing jet thermal protection system cooling efficiency[J]. Journal of Aerospace Power, 2012, 27(12): 2666-2673.

凹腔尺寸对迎风凹腔与逆向喷流组合热防护系统性能的影响

基金项目: 国家自然科学基金(90916018); 高等学校博士学科点专项科研基金(200899980006)

Effect of cavity physical dimension on forward-facing cavity and opposing jet thermal protection system cooling efficiency

  • 摘要: 针对高超声速飞行器热防护系统(TPS)的设计,对迎风凹腔与逆向喷流组合热防护系统展开研究.在数值方法实验验证的基础上,通过求解Navier-Stokes方程得到了带组合热防护系统的鼻锥的流场结构以及壁面热流分布.验证了组合热防护系统的有效性.在逆向喷流条件不变的情况下,进一步研究了凹腔的尺寸变化对其防热能力的影响.研究发现:凹腔的直径越小,深度越深,气动加热值越低.自由来流与逆向喷流形成的回流区在减少鼻锥的气动加热上起到关键的作用.相对于凹腔深度的变化,鼻锥壁面的气动加热更敏感于凹腔直径的变化.

     

  • [1] Aiichiro T,Hiroyuki Y.Advanced thermal protection systems for reusable launch vehicles[R].AIAA-2001-1909, 2001.
    [2] 王保国,李翔,黄伟光.激波后高温高速流场中的传热特性研究[J].航空动力学报,2010,25(5):963-980.WANG Baoguo,LI Xiang,HUANG Weiguang.Analytical study of heat transfer of high-temperature and high-velocity flow field behind shock waves[J].Journal of Aerospace Power,2010,25(5):963-980.(in Chinese)
    [3] 侯玉柱,郑京良,董威.高超声速飞行器瞬态热试验[J].航空动力学报,2010,25(2):343-347.HOU Yuzhu,ZHENG Jingliang,DONG Wei.Transient test of aerodynamic heating for hypersonic vehicle[J].Journal of Aerospace Power,2010,25(2):343-347.(in Chinese)
    [4] Glass D E.Heat-pipe-cooled leading edges for hypersonic vehicles[R].Santa Barbara U.S.:Workshop on Materials and Struetres for Hypersonic Flight,2006.
    [5] 叶宏,耿雪.热光伏技术在飞行器再入过程中的应用[J].中国科学:技术科学,2010,41(1):102-108.YE Hong,GENG Xue.The feasibility analysis of the application of TPV system in reentry[J].Scientia Sinica Techologica,2010,41(1):102-108.(in Chinese)
    [6] Warren C H E.An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body[J].Journal of Fluid Mechanics,1960,8(3):400-417.
    [7] Aso S,Hayashi K,Mizoguchi M.A study on aerodynamic heating reduction due to opposing jet in hypersonic flow[R].AIAA-2002-0646,2002.
    [8] Hayashi K,Aso S.Effect of pressure ratio on aerodynamic heating reduction due to opposing jet[R].AIAA-2003-4041,2003.
    [9] Hayashi K, Aso S,Tani Y.Numerical study of thermal protection system by opposing jet [R].AIAA-2005-188,2005.
    [10] Tamada I,Aso S,Tani Y.Reducing aerodynamic heating by the opposing jet in supersonic and hypersonic flows[R].AIAA-2010-991,2010.
    [11] Hartmann J,Troll B.On a new method for the generation of sound waves[J].Physics Review,1922,20(6):719-727.
    [12] Engblom W A,Goldstein D B.Fluid dynamics of hypersonic forward-facing cavity flow[J].Journal of Spacecraft and Rockets,1997,34(4):437-444.
    [13] Burbank P B,Stallings R L.Heat-transfer and pressure measurements on a flat nose cylinder at a Mach number range of 2.49 to 4.44[R].NASA TM X-221,1959.
    [14] Yuceil B,Dolling D S,Wilson D.A preliminary investigation of the Helmholtz resonator concept for heat flux reduction[R].AIAA-1993-2742,1993.
    [15] Silton S I,Goldstein D B.Modeling of nose tip ablation onset in unsteady hypersonic flow[R].AIAA-2000-0204,2000.
    [16] Silton S I,Goldstein D B.Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow[J].Journal of Fluid Mechanics,2005,528(7):297-321.
    [17] Saravanan S,Nagashetty K,Jagadeesh G,et al.Experimental investigation of heat transfer reduction using forward facing cavity for missile shaped bodies flying at hypersonic speed[C]//26th International Symposium on Shock Waves Part Ⅷ.Gttingen Gemony:Springer,2007:613-617.
    [18] Saravanan S,Jagadeesh G,Reddy K P J.Investigation of missile-shaped body with forward-facing cavity at Mach 8[J].Journal of Spacecraft and Rockets,2009,46(3):577-591.
    [19] 陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2001.
    [20] Baker A J.Numerical grid generation techniques[R].NASA CP-2166,1980.
    [21] Thomas P D,Middelcoff J F.Direct control of the grid point distribution in meshes generated by elliptic equations[R].AIAA-83-0037,1983.
  • 加载中
计量
  • 文章访问数:  1629
  • HTML浏览量:  0
  • PDF量:  1250
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-23
  • 刊出日期:  2012-12-28

目录

    /

    返回文章
    返回