留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类乘波体防热壁板气动加热-温度场耦合特性分析

程兴华 杨涛 丰志伟

程兴华, 杨涛, 丰志伟. 类乘波体防热壁板气动加热-温度场耦合特性分析[J]. 航空动力学报, 2013, 28(7): 1591-1597.
引用本文: 程兴华, 杨涛, 丰志伟. 类乘波体防热壁板气动加热-温度场耦合特性分析[J]. 航空动力学报, 2013, 28(7): 1591-1597.
CHENG Xing-hua, YANG Tao, FENG Zhi-wei. Analysis of aeroheating-temperature field coupling characteristics for thermal protection panel of quasi-wavrider[J]. Journal of Aerospace Power, 2013, 28(7): 1591-1597.
Citation: CHENG Xing-hua, YANG Tao, FENG Zhi-wei. Analysis of aeroheating-temperature field coupling characteristics for thermal protection panel of quasi-wavrider[J]. Journal of Aerospace Power, 2013, 28(7): 1591-1597.

类乘波体防热壁板气动加热-温度场耦合特性分析

Analysis of aeroheating-temperature field coupling characteristics for thermal protection panel of quasi-wavrider

  • 摘要: 针对类乘波体防热壁板,采用松耦合算法推进气动热和传热迭代计算,研究气动加热-温度场的耦合特性.结果表明:在壁板达到辐射平衡前,冷壁热流和辐射平衡热流与真实气动加热的误差分别达+55.1%和-15.4%以上,必须将气动加热和温度场进行耦合分析;当地绝热壁面温度不随时间变化,表面传热系数是耦合效应的关键参数;采用平均表面传热系数进行瞬态气动加热-温度场耦合计算只进行2次气动加热计算,壁面温度预测误差在2.5%以内,可有效提高气动加热-温度场耦合计算的效率.

     

  • [1] 宋少云.多场耦合问题的协同求解方法研究与应用 [D].武汉:华中科技大学,2007. SONG Shaoyun. Research and application of collaborative solution method for multiphysics problems [D].Wuhan: Huazhong University of Science and Technology,2007.(in Chinese)
    [2] Mcnamara J J,Friedmann P P,Powell K G,et al.Three-dimensional aeroelastic and aero-thermoelastic behavior in hypersonic flow.AIAA-2005-2175,2005.
    [3] Culler A J,Mcnamara J J.Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J].AIAA Journal 2010,48(8):1721-1738.
    [4] Spain C,Soistmann D,Parker E.An overview of selected NASP aeroelastic studies at the NASA Langley Research Center.AIAA 90-25218,1990.
    [5] 吴志刚,惠俊鹏,杨超.高超声速下翼面的热颤振工程分析[J].北京航空航天大学学报,2005,31(3):270-273. WU Zhigang,HUI Junpeng,YANG Chao.Hypersonic aerothermoela stic analysis of wings[J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(3):270-273.(in Chinese)
    [6] 吕继航,杨茂,陈凤明.超音速舵面热气动弹性仿真[J].计算机仿真,2010,27(3):43-46. LV Jihang,YANG Mao,CHEN Fengming.Aerothermoelastic simulation of supersonic missile rudder[J].Computer Simulation,2010,27(3):43-46.(in Chinese)
    [7] Borrelli R,Riccio A,Tescione D,et al.Thermo-structural behaviour of an UHTC made nose cap of a reentry vehicle[J].Acta Astronautica,2009,65(314):441-456.
    [8] Myers D E,Martin C J,Blosser M L.Parametric weight comparison of advanced metallic,ceramic tile,and ceramic blanket thermal protection systems.NASA/TM-2000-210289,2000.
    [9] 中国人民解放军总装备部军事训练教材编辑工作委员会.高超声速气动热和热防护[M].北京:国防工业出版社,2003.
    [10] Fay J A,Riddell F R.Theory of stagnation point heat transfer in dissociated air[J].Journal of the Aerospace Science,1985,25(2):73-85.
    [11] 黄志澄.高超声速飞行器空气动力学[M].北京:国防工业出版社,1995.
    [12] 吕丽丽,张伟伟,叶正寅.高超声速再入体表面热流计算[J].应用力学学报,2006,23(2):259-263. LV Lili,ZHANG Weiwei,YE Zhengyin.The calculation of surface heating rates for hypersonic reentry-body[J].Chinese Journal of Applied Mechanics,2006,23(2):259-263.(in Chinese)
    [13] 程兴华,杨涛,常中东.熵层对高超声速二维钝楔气动参数的影响[J].航空动力学报,2012,27(6):1362-1367. CHENG Xinghua,YANG Tao,CHANG Zhongdong.Influence of entropy layer on aerodynamics parameters for hypersonic 2-D blunt wedge[J].Journal of Aerospace Power,2012,27(6):1362-1367.(in Chinese)
    [14] CHENG Xinghua,YANG Tao,LIU Xin.An improved data exchange algorithm based on the relationships between point and triangle[J].Advanced Materials Research,2012,538/539/540/541:777-783.
    [15] Cebral J R,Loehner R.Fluid-structure coupling extensions and improvements [R].AIAA 97-0858,1997.
  • 加载中
计量
  • 文章访问数:  1329
  • HTML浏览量:  1
  • PDF量:  1137
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-10
  • 刊出日期:  2013-07-28

目录

    /

    返回文章
    返回