航空发动机寿命限制件工作边界系统级分析模型
Systematic model for operating boundary analysis of aero-engine life limited parts
-
摘要: 针对提高航空发动机系统安全性的迫切需求,以发动机本质特征和探索性研究成果为依据,分析了寿命限制件工作边界系统级分析模型(systematic model for engine life limited parts operating boundary analysis,SMELLIPOBA)的必要属性及各属性对应的技术基础,总结了相关技术基础领域的研究进展,介绍了SMELLIPOBA的发展现状,展望了这一领域未来研究方向.得出如下结论:满足适航性设计需求的SMELLIPOBA需具备耦合性、动态性、不确定性、学科交叉、多尺度等属性,未来SMELLIPOBA的发展仍将以上述属性为主线.Abstract: In order to meet the urgent needs for enhancing system safety level of aero-engine,the required attributes and technology foundations of systematic model for engine life limited parts operating boundary analysis (SMELLIPOBA) was analyzed.The development of relevant technology foundations in recent years was discussed based on substantive aero-engines characteristics and some exploratory research results.The development situation of SMELLIPOBA was introduced.The research directions in the future of this field were predicted.The conclusion can be drawn is that:SMELLIPOBA which meets the airworthiness requirements should includethe following five characteristics namely:coupling, dynamicity, uncertainty,multidiscipline and multiscale,and development of SMELLIPOBA in future will mainly depends on the development in these characteristics as well.
-
Key words:
- aero-engine /
- safety /
- engine life limited part /
- operating boundary /
- systematic model
-
[1] Mcintyre G R.Patterns in safety thinking [M].Surrey:Ashgate Publishing Company,2000. [2] U.S. Department of Transportation FAA.E-CFR 14 part 33-airworthiness standards:aircraft engines [EB/OL].[2012-07-04].http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=d7681d67d1ec93f1e00b81e2e23e680-e&rgn=div5&view=text&node=14:1.0.1.3.16&idno=14. [3] U.S.Department of Transportation FAA.Advisory circular 33.70-1:guidance material for aircraft engine-life-limited parts requirements [R].Washington,DC:FAA,AC33.70-1,2009. [4] U.S.Department of Transportation FAA.Advisory circular 33.75-1A:guidance material for 14 CFR 33.75,safety analysis.Washington,DC:FAA,AC33.70-1,2009. [5] 丁水汀,张弓,蔚夺魁,等.航空发动机适航概率风险评估方法研究综述 [J].航空动力学报,2011,26(7):1441-1451. DING Shuiting,ZHANG Gong,YU Duokui,et al.Review of probabilistic risk assessment on aero-engine airworthiness[J].Journal of Aerospace Power,2011,26(7):1441-1451.(in Chinese) [6] Walsh P P,Fletcher P.Gas turbine performance[M].Oxford:Blackwell Publishing company,2004. [7] 廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社,2005. [8] 吕亚国,刘振侠,黄生勤.航空发动机内流空气系统通用分析软件设计[J].计算机仿真,2009,26(7):99-103. LV Yaguo,LIU Zhenxia,HUANG Shengqin.General analysis software design of aeroengine internal air system[J].Computer Simulation,2009,26(7):99-103.(in Chinese) [9] Lytle J K.The Numerical propulsion system simulation:an overview [R].NASA/TM-2000-209915,2000. [10] ZHAO Bin,LI Shaobin,LI Qiushi,et al.Numerical research on impact of air system bleeding on compressor performance[J].Transactions of Nanjing University of Aeronautics and Astronautics,2011,28(1):38-47. [11] Alexiou A,Mathioudakia K.Secondary air system component modeling for engine performance simulations[J].Journal of Engineering for Gas Turbines and Power,2009,131(5):031202.1-031202.9. [12] LIU Chuankai,QIU Tian,DING Shuiting.Transient analysis of volume packing effects on turbofan engine [C]//The 2nd International Symposium on Aircraft Airworthiness.Beijing:Procedia Engineering,2011:549-558. [13] 杨春生,孟昭荣.危险的11分钟:世界航空安全与事故分析[M].北京:中国民航出版社,2000. [14] Claus R W,Evans A L,Follen J G.Multidisciplinary propulsion simulation using NPSS [R].AIAA 92-4709-CP,1992. [15] Sehra K A,Whitlow W.Propulsion and power for 21st century aviation[J].Progress in Aerospace Sciences,2004,40(4):199-235. [16] Mckinney S J.Simulation of turbofan engine:Part Ⅰ description of method and balancing technique [R].AFAPL-TR-67-125,1967. [17] Koenig R W,Fishbach L H.GENENG:a program for calculating design and off-design performance for turbojet and turbofan engines [R].NASA TN D-6552,1972. [18] Fishbach L H,Koneig R W.GENENG:Ⅱ a program for calculating design and off-design performance of two-and three-spool turbofans with as many as three nozzles.NASA TN D-6553,1972. [19] Sellers J F,Daniele C J.DYNGEN:a program for calculating steady-state and transient performance of turbojet and turbofan engines.NASA TN D-7901,1975. [20] Fishbach H L,Caddy J M.NNEP:the navy NASA engine program [R].NASA TM X-71857,1975. [21] Plencner R M,Snyder C A.The navy/NASA engine program (NNEP 89):a user's manual [R].NASA TM 105186,1991. [22] Gordon S.The navy/NASA engine program(NNEP 89):Interfacing the program for the calculation of complex chemical equilibrium compositions(CEC) [R].NASA Contractor Report 187208,1991. [23] 李晓华.面向对象软件过程的质量控制[J].计算机时代,2006,13(6):1-2. [24] Curlett B P,Felder J L.Object-oriented approach for gas turbine engine simulation [R].NASA TM 106044,1995. [25] Denning P J.The science of computing:modeling reality[J].American Scientist,1990,78(6):495-498. [26] Drummond C K,Follen G J,Putt C W.Gas turbine system simulation:an object-oriented approach [R].NASA TM 106970,1995. [27] Daniele C J,Krosel S,Szuch J,et al.Digital computer program for generating dynamic turbofan engine models(DIGTEM)[R].NASA TM-83446,1983. [28] 周文祥,黄金泉,窦建平,等.面向对象的涡扇发动机及控制系统仿真平台[J].航空动力学报,2007,22(1):119-125. ZHOU Wenxiang,HUANG Jinquan,DOU Jianping,et al.Object-oriented simulation platform for turbofan engine and its control system[J].Journal of Aerospace Power,2007,22(1):119-25.(in Chinese) [29] 唐海龙,张津.面向对象的航空发动机性能仿真程序设计方法研究[J].航空动力学报,1999,14(4):421-424. TANG Hailong,ZHANG Jin.A study of object-oriented approach for aeroengine performance simulation[J].Journal of Aerospace Power,1999,14(4):421-424.(in Chinese) [30] 窦建平.面向对象的航空发动机建模与仿真[D];南京航空航天大学,2005. DOU Jianping.Object-oriented modeling and simulation of aeroengines [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2005.(in Chinese) [31] Reed J A.Onyx:an object-oriented framework for computational simulation of gas turbine systems [D].Toledo:University of Toledo,1998. [32] Reed J A,Afjeh A A.Computational simulation of gas turbines:Part 1 foundations of component-based models[J].Journal of Engineering for Gas Turbines and Power,2000,122(7):366-376. [33] Follen G J.An object oriented extensible architecture for affordable aerospace propulsion systems [R].ADP014162,2003. [34] 张晓博,王占学,蔡元虎.面向对象的航空发动机性能仿真系统研究[J].机械设计与制造,2010,11(11):133-135. ZHANG Xiaobo,WANG Zhanxue,CAI Yuanhu.A study of object-oriented aero-engine performance simulation system[J].Machinery Design and Manufacture,2010,11(11):133-135.(in Chinese) [35] Bala A,Sethi V,Gatto E L,et al.PROOSIS:a collaborative venture for gas turbine performance simulation using an object oriented programming schema [C]//18th International Symposium on Air Breathing Engines.Beijing:American Institute of Aeronautics and Astronauticsy,2007:1357-1367. [36] Seldner K,Mihaloew J R,Blaha R J.Generalized simulation technique for turbojet engine system analysis [R].NASA TN D-6610,1972. [37] Szuch J R.Analysis of integral lift-fan engine dynamics [R].NASA TM X-2691,1973. [38] Szuch J R.HYDES:a generalized hybrid computer program for studying turbojet or turbofan engine dynamics [R].NASA TM X-3014,1974. [39] Szuch J R,Bruton W M.Real-time simulation of the TF 30-P-3 turbofan engine using a hybrid computer [R].NASA TM X-3106,1974. [40] Szuch J R,Seldner K.Real-time simulation of F 100-PW-100 turbofan engine using the hybrid computer [R].NASA TMX-3261,1975. [41] Haloulakos V E.The 'wave dynamics’ program and its use in solving unsteady compressible flow problems [C]//13th Fluid and Plasma dynamics conference.Colorado:AIAA,1980:1-12. [42] Kritpiphat W,Tontiwachwuthikul P,Chan C W.Pipeline network modeling and simulation for intelligent monitoring and control:a case study of a municipal water supply system[J].Industrial and Engineering Chemistry Research,1998,37(3):1033-1044. [43] Obradovi Ac' D.Modelling of demand and losses in real-life water distribution systems[J].Urban Water,2000,2(2):131-139. [44] Reddy H P,Narasimhan S,Bhallamudi S M.Simulation and state estimation of transient flow in gas pipeline networks using a transfer function model[J].Industrial and Engineering Chemistry Research,2006,45(11):3853- 3863. [45] 侯升平,陶智,韩树军,等.非稳态流体网络方法在发动机空气冷却系统中的应用[J].航空动力学报,2009,24(3):494-498. HOU Shengping,TAO Zhi,HAN Shujun,et al.Application of unsteady fluid network to air cooling system in engine[J].Journal of Aerospace Power,2009,24(3):494-498.(in Chinese) [46] 侯升平,陶智,韩树军,等.非稳态流体网络模拟新方法及其应用[J].航空动力学报,2009,24(6):1253-1257. HOU Shengping,TAO Zhi,HAN Shujun,et al.New simulation approach to the unsteady fluid network and the application[J].Journal of Aerospace Power,2009,24(6):1253-1257.(in Chinese) [47] 陶智,侯升平,韩树军,等.流体网络法在发动机空气冷却系统设计中的应用[J].航空动力学报,2009,24(1):1-6. TAO Zhi,HOU Shengping,HAN Shujun,et al.Study on application of fluid network into the design of air system in engine[J].Journal of Aerospace Power,2009,24(1):1-6.(in Chinese) [48] Kutz K J,Speer T M.Simulation of the secondary air system of aero engines[J].Journal of Turbomachinery,1994,116(4):306-315. [49] 吴丁毅.内流系统的网络计算法[J].航空学报,1996,17(6):653-657. WU Dingyi.Network technique of internal system[J].Acta Aeronautica et Astronautica Sinica,1996,17(6):653-657.(in Chinese) [50] 陆海鹰,杨燕生.航空发动机空气系统特性的数值模拟[J].航空发动机,1997(1):6-13. [51] 蒋向华,杨晓光,王延荣.一种结构可靠性的数值计算方法[J].航空动力学报,2006,20(5):778-782. JIANG Xianghua,YANG Xiaoguang,WANG Yanrong.Numerical approach for structure reliability evaluation[J].Journal of Aerospace Power,2006,20(5):778-782.(in Chinese) [52] 唐俊星,陆山.某涡轮盘低循环疲劳概率寿命数值模拟[J].航空动力学报,2006,21(4):706-710. TANG Junxing,LU Shan.Numerical simulation of LCF probability life of a turbine disk [J].Journal of Aerospace Power,2006,21(4):706-710.(in Chinese) [53] Fishbach L H.Computer simulation of engine systems [R].AIAA 80-20051,1980. [54] Khalid S,Hearne R.Enhancing dynamic model fidelity for improved prediction of turbofan engine transient performance [C]//AIAA/SAE/ASME 16th Joint Propulsion Conference.Hartford,Connecticut:AIAA,1980:1-12. [55] 朱之丽,廖阔.热交换对喷气发动机过渡过程影响分析[J].推进技术,1996,17(3):10-15. ZHU Zhili,LIAO Kuo.Analysis of heat transfer impacting on gas turbine engine transients[J].Journal of Propulsion Technology,1996,17(3):10-15.(in Chinese) [56] Visser W,Kluiters S.Modeling the effects of operating conditions and alternative fuels on gas turbine performance and emissions [R].NLR-TP-98629,1998. [57] Muller Y.Secondary air system model for integrated thermomechanical analysis of a jet engine [C]//Proceedings of ASME Turbo Expo 2008:Power for Land,Sea and Air.Berlin:ASME,2008:1-16. [58] 侯升平.航空发动机空气系统模拟方法研究 [D].北京:北京航空航天大学,2009. HOU Shengping.Study on the simulation method of air system in jet engine [D].Beijing:Beijng University of Aeronautics and Astronautics,2009.(in Chinese) [59] Panchenko V,Moustapha H,Mah S,et al.Preliminary multi-disciplinary optimization in turbomachin turbomachinery design [R].ADP014195,2003. [60] Dalton J,Churchill P,Maloney T M.National aerospace leadership initiative:Phase Ⅱ [R].AFRL-OSR-VA-TR-2011-0401,2010.
点击查看大图
计量
- 文章访问数: 1371
- HTML浏览量: 3
- PDF量: 1029
- 被引次数: 0