留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜切径向旋流燃烧室主燃区光学测量与特性分析

陈敏 宋文艳 肖隐利 陈亮 李建平

陈敏, 宋文艳, 肖隐利, 陈亮, 李建平. 斜切径向旋流燃烧室主燃区光学测量与特性分析[J]. 航空动力学报, 2013, 28(8): 1727-1735.
引用本文: 陈敏, 宋文艳, 肖隐利, 陈亮, 李建平. 斜切径向旋流燃烧室主燃区光学测量与特性分析[J]. 航空动力学报, 2013, 28(8): 1727-1735.
CHEN Min, SONG Wen-yan, XIAO Yin-li, CHEN Liang, LI Jian-ping. Optical measurement and characteristic analysis of aeroengine combustor primary zone with counter-rotating swirler[J]. Journal of Aerospace Power, 2013, 28(8): 1727-1735.
Citation: CHEN Min, SONG Wen-yan, XIAO Yin-li, CHEN Liang, LI Jian-ping. Optical measurement and characteristic analysis of aeroengine combustor primary zone with counter-rotating swirler[J]. Journal of Aerospace Power, 2013, 28(8): 1727-1735.

斜切径向旋流燃烧室主燃区光学测量与特性分析

基金项目: 西北工业大学基础研究基金(JC20100213)

Optical measurement and characteristic analysis of aeroengine combustor primary zone with counter-rotating swirler

  • 摘要: 针对斜切径向旋流环形燃烧室模型,采用可调谐二极管激光吸收光谱(TDLAS)、相干反斯托克斯喇曼光谱(CARS)光学测量手段,在模化状态(Case 2)下,对燃烧室主燃区进行温度测量,分别得到了主燃区内12个点的温度和沿两条路径的积分温度.使用Fluent 12.0对Case 2进行数值模拟,分别使用两种非预混燃烧模型:平衡化学反应模型(EM)和稳态层流小火焰(SLF)模型.通过将两种不同燃烧模型的计算结果与TDLAS,CARS试验测量数据作对比验证,发现EM计算得到的温度更高,并与试验测量温度更符合,其中与CARS测量的误差小于6%.在试验验证的基础上,完成燃烧室在冷流状态(Case 1)下的计算,分析主燃区的气流组织和主燃孔射流对回流区的影响;利用EM计算分析燃烧室主燃区在全压状态(Case 3)下燃料分布、温度场、组分分布和性能参数,如燃烧室的燃烧效率为0.97、出口温度分布系数为0.312等,较为全面反映了燃烧室内气流流动换热和燃烧现象.

     

  • [1] Reddy A P R,Sujith I,Chakravarthy S R.Swirler flow field characteristics in a sudden expansion combustor geometry using PIV.AIAA 2005-217,2005.
    [2] Brown M S,Barone D L,Terry W F,et al.Accuracy,precision,and scatter in TDLAS measurements [R].AIAA 2010-302,2010.
    [3] Sappey A D,Masterson B P,ZHAO Qingchun,et al.TDLAS measurements of multiple species and temperature of augmented aeroengines [R].AIAA 2009-5064,2009.
    [4] Thariyan M P,Bhuiyan A H,Naik S V.Dual-pump CARS and OH-PLIF measurements at elevated pressures in a gas turbine combustor facility [R].AIAA 2010-4808,2010.
    [5] Mongia H C.Perspective of combustion modeling for gas turbine combustors [R].AIAA Paper 2004-0156,2004.
    [6] Mongia H C.Recent progress in comprehensive modeling of gas turbine combustion [R].AIAA Paper 2008-1445,2008.
    [7] 郎洪俭,郭志辉,黄勇.主燃孔对旋流杯下游流场的影响[J].推进技术,2006,27(2):110-113. LANG Hongjian,GUO Zhihui,HUANG Yong.Effect of primary holes on the velocity profiles downstream of a swirl cup[J].Journal of Propulsion Technology,2006,27(2):110-113.(in Chinese)
    [8] 党新宪.双旋流环形燃烧室试验研究和数值模拟 [D].南京:南京航空航天大学,2009. DANG Xinxian.Experimental investigation and numerical simulation of a gas turbine annular combustor with dual-stage swirler [D].Nangjing:Nanjing University of Aeronautics and Astronautics,2009.(in Chinese)
    [9] 王平,张宝诚.航空发动机燃烧室主燃区的数值模拟分析[J].航空发动机,2005,31(1):47-51. WANG Ping,ZHANG Baocheng.Numerical simulation analysis of an aeroengine combustor primary zone[J].Areoengine,2005,31(1):47-51.(in Chinese)
    [10] Hsiao G,Mongia H C.Swirl cup modeling:Part Ⅲ grid independent solution with different turbulence models [R].AIAA 2003-1349,2003.
    [11] Hsiao G,Mongia H C.Swirl cup modeling:Part Ⅱ inlet boundary conditions [R].AIAA 2003-1350,2003.
    [12] Behrendt T,Hassa C,Mohamed A,et al.In situ measurement and validation of gaseous species concentrations of a gas turbine model combustor by tunable diode laser absorption spectroscopy (TDLAS) [R].Proceedings of ASME Turbo.Expo.,2008.
    [13] 解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005.
    [14] Lefebvre A H,Ballal D R.Gas turbine combustion[M].Ann Arbor,MI:Edwards Brothers,1999.
    [15] 彭泽琰,刘刚.航空燃气轮机原理[M].北京:国防工业出版社,2000.
    [16] 焦树建.燃气轮机燃烧室[M].北京:机械工业出版社,1988.
    [17] 金如山.航空燃气轮机燃烧室[M].北京:宇航出版社,1985.
  • 加载中
计量
  • 文章访问数:  1724
  • HTML浏览量:  9
  • PDF量:  1151
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-20
  • 刊出日期:  2013-08-28

目录

    /

    返回文章
    返回