留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于喘振裕度估计模型的发动机高稳定性控制

王健康 张海波 陈可 孙丰勇 周骁

王健康, 张海波, 陈可, 孙丰勇, 周骁. 基于喘振裕度估计模型的发动机高稳定性控制[J]. 航空动力学报, 2013, 28(9): 2145-2154.
引用本文: 王健康, 张海波, 陈可, 孙丰勇, 周骁. 基于喘振裕度估计模型的发动机高稳定性控制[J]. 航空动力学报, 2013, 28(9): 2145-2154.
WANG Jian-kang, ZHANG Hai-bo, CHEN Ke, SUN Feng-yong, ZHOU Xiao. High stability control of engine based on surge margin estimation model[J]. Journal of Aerospace Power, 2013, 28(9): 2145-2154.
Citation: WANG Jian-kang, ZHANG Hai-bo, CHEN Ke, SUN Feng-yong, ZHOU Xiao. High stability control of engine based on surge margin estimation model[J]. Journal of Aerospace Power, 2013, 28(9): 2145-2154.

基于喘振裕度估计模型的发动机高稳定性控制

基金项目: 国家自然科学基金(51006052);航空科学基金(2010ZB52011)

High stability control of engine based on surge margin estimation model

  • 摘要: 为解决超机动飞行中发动机喘振裕度不可测量的难题,提出一种发动机喘振裕度的建模方法.喘振裕度的模型分为常规飞行时的无畸变模型与超机动飞行时的损失量模型两部分.无畸变模型是基于喘振裕度特征选择算法筛选最优模型输入,以非线性拟合方法建模实现;损失量模型则基于在线攻角预测模型实时评估发动机进口畸变度,进而计算获得.而后利用上述估计模型对发动机的稳定性进行实时预测,在不改变发动机原控制回路的基础上,对涡轮落压比控制指令进行喘振损失补偿,实现高稳定性控制.最后,通过大攻角机动飞行的数字仿真,验证了上述方案可以准确控制发动机喘振裕度在11%~13%,保证了发动机工作的稳定性和高效性.

     

  • [1] DeLaat J C,Southwick R D,Gallops G W.High stability engine control (HISTEC)[R].AIAA 96-2586,1996.
    [2] Orme J S,DeLaat J C,Southwick R D,et al.Development and testing of a high stability engine control (HISTEC) system[R].NASA/TM-1998-206562,1998.
    [3] Southwick R D,Gallops G W,Kerr L J,et al.High stability engine control (HISTEC) flight test results[R].NASA/TM-1998-208481,1998.
    [4] LIU Yuan,Dhingra M,Prasad J V R.Active compressor stability management via a stall margin control mode[J].Journal of Engineering for Gas Turbines and Power,2010,132(5):1-10.
    [5] Inoue M,Kuroumaru M,Tanino T, et al.Propagation of multiple short-length-scale stall cells in axial compressor rotor[J].Journal of Turbomachinery,2000,122(1): 45-54.
    [6] Dhingra M,Neumeier Y,Prasad J V R,et al.A stochastic model for a compressor stability measure[J].Journal of Engineering for Gas Turbines and Power,2007,129(3):730-737.
    [7] WANG Lifeng,LI Zhengxi,LIN Zi.Enhancing the fidelity of post-stall flight simulation using detailed propulsion system model[R].AIAA-2004-4810,2004.
    [8] 王立峰,张津.超机动飞行推进系统稳定性控制研究[J].推进技术,2000,21(4):1-4. WANG Lifeng,ZHANG Jin.Propulsion system stability control for super-maneuvering flight[J].Journal of Propulsion Technology,2000,21(4):1-4.(in Chinese)
    [9] 袁春飞.飞行/推进系统综合优化控制模式及其关键技术[D].南京:南京航空航天大学,2004. YUAN Chunfei.A study of propulsion optimization control modes[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2004.(in Chinese)
    [10] 陈霆昊,张海波,孙健国.基于攻角预测模型的航空发动机高稳定性控制[J].航空动力学报,2010,25(7):1676-1682. CHEN Tinghao,ZHANG haibo,SUN Jianguo.Aero-engine high stability control scheme design based on angle of attack predictive model[J].Journal of Aerospace Power,2010,25(7):1676-1682.(in Chinese)
    [11] 廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社,2005.
    [12] Goldsmith E L,Seddon J.Practical intake aero dynamic design[M].[S.I.],US:AIAA,1993.
    [13] Ojeda F,Suykens J A K,De Moor B.Low rank updated LSSVM classifiers for fast variable selection[J].Neural Networks,2008,21(2/3):437-449.
    [14] ZHAO Yongping,SUN Jianguo,WANG Jiankang.Online parsimonious least squares support vector regression and its application to sensor analytical redundancy for aeroengines[J].Transactions of Nanjing University of Aeronautics and Astronautics,2009,26(4):280-287.
    [15] 黄红选,韩继业.数学规划[M].北京:清华大学出版社,2006.
    [16] Steenken W G,Williams J G,Walsh K R.Inlet flow characteristics during rapid maneuvers for an F/A-18A airplane[R].NASA/TM-1999-206587,1999.
  • 加载中
计量
  • 文章访问数:  1907
  • HTML浏览量:  0
  • PDF量:  1250
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-24
  • 刊出日期:  2013-09-28

目录

    /

    返回文章
    返回