留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

箔片摩擦对波箔型径向气体轴承静刚度和悬浮转速影响实验

徐方程 刘占生 马瑞贤 闫佳佳

徐方程, 刘占生, 马瑞贤, 闫佳佳. 箔片摩擦对波箔型径向气体轴承静刚度和悬浮转速影响实验[J]. 航空动力学报, 2013, 28(10): 2194-2201.
引用本文: 徐方程, 刘占生, 马瑞贤, 闫佳佳. 箔片摩擦对波箔型径向气体轴承静刚度和悬浮转速影响实验[J]. 航空动力学报, 2013, 28(10): 2194-2201.
XU Fang-cheng, LIU Zhan-sheng, MA Rui-xian, YAN Jia-jia. Experiment of foil friction effect on static stiffness and lift off speed of bump foil journal bearing[J]. Journal of Aerospace Power, 2013, 28(10): 2194-2201.
Citation: XU Fang-cheng, LIU Zhan-sheng, MA Rui-xian, YAN Jia-jia. Experiment of foil friction effect on static stiffness and lift off speed of bump foil journal bearing[J]. Journal of Aerospace Power, 2013, 28(10): 2194-2201.

箔片摩擦对波箔型径向气体轴承静刚度和悬浮转速影响实验

基金项目: 国家自然科学基金(11176010);航空科学基金(20110377005)

Experiment of foil friction effect on static stiffness and lift off speed of bump foil journal bearing

  • 摘要: 加工制造了两个不同轴承壳体圆柱孔内表面的表面粗糙度的波箔型径向气体轴承.在建立的波箔型径向气体轴承性能测试实验台上对预紧状态下两个波箔型径向气体轴承进行了静刚度测试实验,并利用摩擦力矩法测量了波箔型径向气体轴承的悬浮转速,通过对比两个轴承的实验结果分析了波纹箔片和轴承壳体之间的摩擦效应对轴承静刚度和悬浮转速的影响.结果表明:降低轴承壳体圆柱孔内表面的表面粗糙度能够减弱波纹箔片和轴承壳体之间的摩擦,减小了轴承静刚度,进而在轴承载荷相同的条件下有效降低了波箔型径向气体轴承的悬浮转速,减少了轴承表面磨损,对轴承结构设计和提高轴承寿命具有工程指导意义.此外,波箔型径向气体轴承的静刚度并不是线性的,而是随着箔片变形量的增大而增大,因此有必要在波箔型径向气体轴承理论建模时考虑箔片结构刚度的非线性特性.

     

  • [1] Agrawal G L.Foil air/gas bearing technology:an overview [R].ASME Paper 1997-GT-347,1997.
    [2] Kim D J,Andron C,Chang S S,et al.Mesoscale foil gas bearings for palm-sized turbomachinery:design,manufacturing,and modeling[J].ASME Journal of Engineering for Gas Turbine and Power,2009,131(4):042502.1-042502.10.
    [3] Kai F,Shigehiko K.Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model[J].ASME Journal of Tribology,2010,132(2):021706.1-021706.11.
    [4] DellaCorte C,Zaldana A R,Radil K C.A system approach to the solid lubrication of foil gas bearings for oil-free turbomachinery [R].NASA TM-211482,2002.
    [5] DellaCorte C,Nalco M J.Load capacity estimation of foil gas bearings for oil-free turbomachinery applications [R].NASA TM-209782,2000.
    [6] Roger Ku C P,Heshmat H.Compliant foil bearing structural stiffness analysis:Part Ⅰ theoretical model including strip and variable bump foil[J].ASME Journal of Tribology,1992,144(2):394-400.
    [7] Roger Ku C P,Heshmat H.Structural stiffness and Coulomb damping in compliant foil journal bearings:theoretical considerations[J].Tribology Transactions,1994,37(3):525-533.
    [8] Iordanoff I.Analysis of an aerodynamic compliant foil thrust bearing:method for a rapid design[J].ASME Journal of Tribology,1999,121(4):816-822.
    [9] Lez S L,Arghir M,Frene J.Static and dynamic characterization of a bump-type foil bearing structure[J].ASME Journal of Tribology,2007,129(1):75-83.
    [10] Lee Y B,Park D J,Kim C H,et al.Operating characteristics of the bump foil bearings with top foil bending phenomenon and correlation among bump foils[J].Tribology International,2008,41(4):221-233.
    [11] Kai F,Kaneko S.Link-sping model of bump-type foil [R].ASME Paper 2009-GT-59260,2009.
    [12] Lee D H,Kim Y C,Kim K W.The effect of Coulomb friction on the static performance of foil journal bearings[J].Tribology International,2010,43(2):1065-1072.
    [13] Kim D J,Zimbru G.Start-stop characteristics and thermal behavior of a large hybrid airfoil bearing for aero-propulsion applications[J].ASME Journal of Engineering for Gas Turbine and Power,2012,134(3):032502.1-032502.9.
    [14] Andrés L S,Chirathadam T A.A metal mesh foil bearing and a bump-type foil bearing:comparison of performance for two similar size gas bearings [R].ASME Paper 2012-GT-68437,2012.
    [15] Rubio D,Andrés L S.Bump-type foil bearing structural stiffness:experiments and predictions[J].ASME Journal of Engineering for Gas Turbine and Power,2006,128(3):653-660.
  • 加载中
计量
  • 文章访问数:  1512
  • HTML浏览量:  4
  • PDF量:  1555
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-14
  • 刊出日期:  2013-10-28

目录

    /

    返回文章
    返回