留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再入钝锥体烧蚀热防护内部热响应的数值仿真

张涛 陈德江

张涛, 陈德江. 再入钝锥体烧蚀热防护内部热响应的数值仿真[J]. 航空动力学报, 2013, 28(10): 2248-2255.
引用本文: 张涛, 陈德江. 再入钝锥体烧蚀热防护内部热响应的数值仿真[J]. 航空动力学报, 2013, 28(10): 2248-2255.
ZHANG Tao, CHEN De-jiang. Numerical simulation of internal thermal response of ablative thermal protection for reentry spacecraft[J]. Journal of Aerospace Power, 2013, 28(10): 2248-2255.
Citation: ZHANG Tao, CHEN De-jiang. Numerical simulation of internal thermal response of ablative thermal protection for reentry spacecraft[J]. Journal of Aerospace Power, 2013, 28(10): 2248-2255.

再入钝锥体烧蚀热防护内部热响应的数值仿真

Numerical simulation of internal thermal response of ablative thermal protection for reentry spacecraft

  • 摘要: 研究了烧蚀热防护系统内部热响应的计算模型和计算方法.采用碳化层-热解面-原始材料层模型,建立碳基材料内部热响应物理模型和数学模型,利用有限元法分析和计算再入目标热防护系统轴对称内部热响应.着重研究和分析了轴对称烧蚀过程中热解气体质量流率计算方法和传热机制.将热解气体与碳化层之间的对流换热处理为源项,通过保证刚度矩阵和形函数矩阵的正定对称性可以加速温度场计算收敛.计算表明:热解气体的质量流量主要由厚度方向构成,占80%以上;头部驻点附近最大烧蚀厚度接近10mm,需要采用抗烧蚀能力强的碳-碳材料,身部烧蚀量小于2mm,可以采用密度较小的碳-酚醛材料.

     

  • [1] 张志成.高超声速气动热和热防护[M].北京:国防工业出版社,2003:222-317.
    [2] 王国雄.弹头技术[M].北京:宇航出版社,1991:415-591.
    [3] Blackwell B F. Numerical prediction of one-dimensional ablation using a finite control volume procedure with exponential differencing[J].Numerical Heat Transfer,1998,14(1):17-34.
    [4] Blackwell B F,Hogan R E.One-dimensional ablation using Landau transformation and finite control volume procedure[J].Journal of Themophysics and Heat Transfer,1993,6(2):282-287.
    [5] Amar A J,Blackwell B F,Edwards J R.One-dimensional ablation with pyrolysis gas flow using a full Newton's method and finite control volume procedure [R].AIAA 2007-4535,2007.
    [6] Amar A J,Blackwell B F,Edwards J R.One-dimensional ablation using a full Newton's method and finite control volume procedure[J].Journal of Themophysics and Heat Transfer,2008,22(1):77-82.
    [7] Katte S S,Das S K,Venkateshan S P.Two-dimensional ablation in cylindrical geometry[J].Journal of Thermophysics and Heat Transfer,2000,14(4):548-556.
    [8] Hogan R E,Blackwell B F,Cochran R J.Numerical solution of two-dimensional ablation problems using the finite control volume method with unstructured grids [C]//The 6th AIAA/ASME Joint Thermophysics and Heat Transfer Conference.Colorado,US:AIAA/ASME,1994:20-23.
    [9] Blackwell B F,Hogan R E.Numerical solution of axis symmetric heat conduction problems using finite control volume technique[J].Journal of the Mophysics and Heat Transfer,1993,7(3):462-471.
    [10] Hogge M,Gerrekens P.Two-dimensional deforming finite element methods for surface ablation[J].AIAA Journal,1985,23(3):465-472.
    [11] Bahramian A R,Kokabi M, Famili M H N,et al.Ablation and thermal degradation behaviour of a composite based on resole type phenolic resin:process modeling and experimental[J].Olymer,2006,47(1):3661-3673.
    [12] Frank S.Galileo probe heat shield ablation experiment[J].Journal of Spacecraft and Rockets,1997,34(6):705-713.
    [13] McManus H I N,Springer G S.High temperature thermomechanical behavior of carbonphenolic and carbon-carbon composites[J].Journal of Composite Materials,2006,26(2):206-229.
    [14] Murray A L,Russell G W.Coupled aero heating/ablation analysis for missile configurations[J].Journal of Spacecraft and Rockets,2002,39(4):468-475.
    [15] Chen Y K,Milos F S.Two-dimensional implicit thermal response and ablation program for charring materials on hypersonic space vehicles [R].AIAA 2000-0206,2000.
    [16] Tran H,Johnson C,Rasky D,et al.Phenolic impregnated carbon ablators(PICA) for discovery class missions [R].AIAA 1996-1911,1996.
  • 加载中
计量
  • 文章访问数:  1473
  • HTML浏览量:  4
  • PDF量:  1303
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-26
  • 刊出日期:  2013-10-28

目录

    /

    返回文章
    返回