留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮叶栅超声速流场流动特征与气膜冷却特性

陈四杰 单勇 张靖周 谭晓茗 费微微

陈四杰, 单勇, 张靖周, 谭晓茗, 费微微. 涡轮叶栅超声速流场流动特征与气膜冷却特性[J]. 航空动力学报, 2013, 28(11): 2448-2454.
引用本文: 陈四杰, 单勇, 张靖周, 谭晓茗, 费微微. 涡轮叶栅超声速流场流动特征与气膜冷却特性[J]. 航空动力学报, 2013, 28(11): 2448-2454.
CHEN Si-jie, SHAN Yong, ZHANG Jing-zhou, TAN Xiao-ming, FEI Wei-wei. Flow field and film cooling characteristics in supersonic turbine cascade[J]. Journal of Aerospace Power, 2013, 28(11): 2448-2454.
Citation: CHEN Si-jie, SHAN Yong, ZHANG Jing-zhou, TAN Xiao-ming, FEI Wei-wei. Flow field and film cooling characteristics in supersonic turbine cascade[J]. Journal of Aerospace Power, 2013, 28(11): 2448-2454.

涡轮叶栅超声速流场流动特征与气膜冷却特性

基金项目: 中央高校基本科研业务费专项资金(NZ2012109,NS2013019);国家自然科学基金(51306088)

Flow field and film cooling characteristics in supersonic turbine cascade

  • 摘要: 应用shear strain transport(SST) k-ω 两方程湍流模型,对超声速涡轮叶栅通道内气膜冷却特性进行数值研究,得到不同气膜孔倾角和吹风比下叶栅通道内流场流动特征以及气膜冷却效率的变化规律.在激波入射点附近的气膜射流能够向分离区边界层中补充动量,克服逆压力梯度,有效改善由于激波引起的局部过热.亚声速流动状态下的气膜入射角度对冷却效率的影响能够在较大吹风比下得以体现,而超声速主流状态下,气膜冷却效率与入射角度基本无关,说明亚声速的气膜冷却射流对超声速主流的穿透力要弱于对亚声速主流的穿透力;超声速主流条件下,在激波入射位置的气膜冷却效率要高于激波入射位置下游的气膜冷却效率,这与气膜孔出流在当地的湍流度有关.

     

  • [1] Hartnett J P,Birkebak R C,Eckert E R G.Velocity distributions,temperature distributions effectiveness and heat transfer in cooling of a surface with a pressure gradient[J].International Development in Heat Transfer,1961,4,682-689.
    [2] Carlson L W,Talmor E.Gaseous film cooling at various degrees of hot gas acceleration and turbulence levels[J].Heat Mass Transfer,1968,11(11):1695-1713.
    [3] Lutum E,Wbifersdoff J,Semmler K,et al.An experimental investigation of film cooling on a convex surface subjected to favorable pressure gradient flow[J].Heat and Mass transfer,2001,44(5):939-951.
    [4] Lutum E,Wolfersdorf J,Weigand B,et al.Film cooling on a convex surface with zero pressure gradient flow[J].Heat and Mass Transfer,2000,43(6):2973-2987.
    [5] Lutum E,Wblfersdorf J,Semmler K,et al.Film cooling on a convex surface:influence of external pressure gradient and mach number on film cooling performance[J].Heat and Mass Transfer,2001,38(1):7-16.
    [6] Aupoix B,Mignosi A,Viala S.Experimental and numerical study of supersonic film cooling[J].AIAA Journal,1998,36(6):915-923.
    [7] O'Conner J.A numerical study of film cooling in supersonic flow.AIAA 91-4010,1991.
    [8] Zimmermann H.Calculation of two-and three-dimensional flow in a transonic turbine cascade with particular regard to the losses.AIAA 90-1542,1990.
    [9] Konopka M,Meinke M,Schroder W.Large-eddy simula tion of supersonic film cooling.AIAA-2010-6792,2010.
    [10] 彭威,姜培学.直通道和弯曲通道中超声速气膜冷却研究[J].航空动力学报,2008,23(3):406-409. PENG Wei,JIANG Peixue.Supersonic film cooling research in a straight channel and curved channel[J].Journal of Aerospace Power,2008,23(3):406-409.(in Chinese)
    [11] 彭威,姜培学.变截面主流加速对超声速气膜冷却的影响[J].工程热物理学报,2008,29(2):303-406. PENG Wei,JIANG Peixue.Influence of ariable mainstream acceleration on the supersonic film cooling[J]. Journal of Engineering Thermophysics,2008,29(2):303-406. (in Chinese)
    [12] Juhany K A,Htmt M L.Flow field measurements in supersonic film cooling including the rffect of shock-wave interaction[J].AIAA Journal,1994,32(3):578-585.
    [13] Juhany K A,Hunt M L,Sivo J M.Influence of injectant Mach number and temperature on supersonic film cooling[J].Journal of Thermophysics and Heat Transfer,1994,8(1):59-67.
    [14] Lebedev V P,Lemanov V V,Terekhov V I.Film-cooling emciency in a laval nozzle under conditions of high free stream turbulence[J].Journal of Heat Transfer,2006,128(6):571-579.
    [15] 王扬平,姜培学.超音速气膜冷却及其受斜激波的影响//中国工程热物理学会传热传质学术年会论文集:下册.北京:中国工程热物理学会,2005:1756-1760.
    [16] Peng W,Jiang P X.Influence of shock waves on supersonic film cooling[J].Journal of Spacecraft and Rockets,2009,46(1):69-73.
  • 加载中
计量
  • 文章访问数:  1358
  • HTML浏览量:  4
  • PDF量:  971
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-29
  • 刊出日期:  2013-11-28

目录

    /

    返回文章
    返回