留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某带分流叶片的亚声速离心压气机叶轮CFD结果确认及分析

李培元 顾春伟

李培元, 顾春伟. 某带分流叶片的亚声速离心压气机叶轮CFD结果确认及分析[J]. 航空动力学报, 2013, 28(11): 2495-2502.
引用本文: 李培元, 顾春伟. 某带分流叶片的亚声速离心压气机叶轮CFD结果确认及分析[J]. 航空动力学报, 2013, 28(11): 2495-2502.
LI Pei-yuan, GU Chun-wei. CFD result validation and analysis of a subsonic centrifugal compressor impeller with splitter blades[J]. Journal of Aerospace Power, 2013, 28(11): 2495-2502.
Citation: LI Pei-yuan, GU Chun-wei. CFD result validation and analysis of a subsonic centrifugal compressor impeller with splitter blades[J]. Journal of Aerospace Power, 2013, 28(11): 2495-2502.

某带分流叶片的亚声速离心压气机叶轮CFD结果确认及分析

基金项目: 国家自然科学重点基金(51136003)

CFD result validation and analysis of a subsonic centrifugal compressor impeller with splitter blades

  • 摘要: 为了研究数值模拟结果的准确性,使用计算流体动力学(CFD)软件Numeca,采用Spalart-Allmaras(S-A)模型和shear stress transport(SST)模型对某压比为1.5的亚声速离心压气机叶轮的性能进行了计算,并将4个不同截面上的速度分布等计算结果和实验数据进行了对比.结果表明:S-A模型和SST模型的计算结果几乎完全相同,误差小于1%;整体性能的模拟计算结果和实验值吻合较好,在设计工况点,误差在2%以内,在非设计工况点,误差也小于6%;不同截面上速度分布的计算结果和实验值相差较大,在轮毂附近,最大误差在20%左右,在轮缘附近,部分截面最大误差高于100%,不能真实反映轮缘附近的流动情况.

     

  • [1] Dean R C,Senoo Y.Rotating wakes invaneless diffusers[J].Journal of Basic Engineering,1960,82(3):563-574.
    [2] Eckardt D.Instantaneous measurements in jet-wake discharge flow of a centrifugal compressor impeller[J].Journal of Engineering for Power,1975,97(3):337-346.
    [3] Eckardt D.Detailed flow investigations within a high-speed centrifugal-compressor impeller[J].Journal of Fluids Engineering,1976,98(3),390-402.
    [4] Eckardt D.Flow field analysis of radial and backswept centrifugal compressor impellers:Part 1 flow measurements using a laser velocimeter.New York:Performance Prediction of Centrifugal Pumps and Compressors,1979.
    [5] Krain H,Hoffmann B,Par H.Aerodynamics of a centrifugal compressor impeller with transonic inlet conditions.ASME Paper 95-GT-79,1995.
    [6] Krain H,Karpinski G,Beversdorff M.Flow analysis in a transonic centrifugal compressor rotor using 3-component laser velocimetry.ASME Paper 2001-GT-0315,2001.
    [7] Krain H,Richter F,Teide V.Investigations of the flow through a high pressure ratio centrifugal impeller.ASME Paper GT2002-30394,2002
    [8] Hirotaka H,Kiyoshi H,Kunio S,et al.Detailed flow study of Mach number 1.6 high transonic flow with a shock wave in a pressure ratio 11 centrifugal compressor impeller.ASME Paper GT 2004-53435,2004.
    [9] Hirotaka H,Susumu M, Masayuki S,et al.Detailed flow study of Mach number 1.6 high transonic flow in a pressure ratio 11 centrifugal compressor impeller:Part 2 effect of inducer shroud bleed and development of a low energy region along the shroud.ASME Paper GT2007-27694,2007.
    [10] Shabbir A,Zhu J,Celestina M.Assessment of three turbulence models in a compressor rotor.ASME Paper 96-GT-198,1996.
    [11] Roberts D A,Steed R.Comparison of steady-state centrifugal stage CFD analysis to experimental rig data.Pittsburgh,US:ANSYS User's Conference,2004.
    [12] Denton J D,Dawes W N.Computational fluid dynamics for turbomachinery design[J].Journal of Mechanical Engineering Science,1998,213(2):107-124.
    [13] Mangani L,Mauri S.Assessment of various turbulence models in a high pressure ratio centrifugal compressor with an object oriented CFD code[J].Journal of Turbomachinery,2012,134(6):061033.1-061033.10.
    [14] Bourgeois J,Martinuzzi R,Savory E.Assessment of turbulence model predictions for an aero-engine centrifugal compressor[J].Journal of Turbomachinery,2012,133(1):011025.1-011025.15.
    [15] GU Chunwei.The investigation of unsteady flow character in centrifugal compressor.Tokyo:Tokyo University,1999.
    [16] Yamada K,Tamagawa Y,Fukushima H.Comparative study on tip clearance flow fields in two types of transonic centrifugal compressor impeller with splitter blades.ASME Paper GT2010-23345,2010.
  • 加载中
计量
  • 文章访问数:  1454
  • HTML浏览量:  0
  • PDF量:  967
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-29
  • 刊出日期:  2013-11-28

目录

    /

    返回文章
    返回