留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中心分级的高温升燃烧室性能预估

尚守堂 高贤智 郭瑞卿 郭大鹏 高伟伟 李锋

尚守堂, 高贤智, 郭瑞卿, 郭大鹏, 高伟伟, 李锋. 基于中心分级的高温升燃烧室性能预估[J]. 航空动力学报, 2014, (5): 1001-1007.
引用本文: 尚守堂, 高贤智, 郭瑞卿, 郭大鹏, 高伟伟, 李锋. 基于中心分级的高温升燃烧室性能预估[J]. 航空动力学报, 2014, (5): 1001-1007.
SHANG Shou-tang, GAO Xian-zhi, GUO Rui-qing, GUO Da-peng, GAO Wei-wei, LI Feng. Capability prediction of high temperature rise center-staged combustor[J]. Journal of Aerospace Power, 2014, (5): 1001-1007.
Citation: SHANG Shou-tang, GAO Xian-zhi, GUO Rui-qing, GUO Da-peng, GAO Wei-wei, LI Feng. Capability prediction of high temperature rise center-staged combustor[J]. Journal of Aerospace Power, 2014, (5): 1001-1007.

基于中心分级的高温升燃烧室性能预估

基金项目: 

国家自然科学基金(50476005,90716025)

详细信息
    作者简介:

    尚守堂(1970- ),男,辽宁喀左人,研究员,博士生,主要从事燃烧、流动控制及隐身方面研究.

  • 中图分类号: V231.1

Capability prediction of high temperature rise center-staged combustor

  • 摘要: 针对高推质比航空发动机高温升燃烧室的需求,提出一种中心分级燃烧室的设计方案,在保证与现有单环腔燃烧室扩压器尺寸、外机匣最大直径及燃烧室出口尺寸相同的情况下,对设计模型进行了三维数值模拟,并与现有的单环腔燃烧室数值模拟结果及试验结果进行了对比分析.研究结果表明:采用中心分级燃烧室,在获得更高温升的同时,可获得比单环腔燃烧室更高的总压恢复系数和比单环腔燃烧室更低的燃烧室出口温度分布系数(OTDF),其慢车工况下的CO排放和NO排放略高于单环腔燃烧室;在设计总油气比为0.045的情况下,温升可达1360K,总压恢复系数大于等于0.96,OTDF小于等于0.14,出口径向温度分布系数(RTDF)小于等于0.10,燃烧效率大于等于0.987.

     

  • [1] Bahr D W.Design technology for future aircraft turbine engine combustors[R].AIAA 79-1197, 1979.
    [2] Bahr D W.Technology for the design of high temperature rise combustor[R].AIAA 85-1292, 1985.
    [3] 林宇震, 林阳, 张弛, 等.先进燃烧室分级燃烧空气流量分配的探讨[J].航空动力学报, 2010, 25(9):1923-1931. LIN Yuzhen, LIN Yang, ZHANG Chi, et al.Discussion on combustion airflow distribution of advanced staged combustor[J].Journal of Aerospace Power, 2010, 25(9):1923-1931.(in Chinese)
    [4] Sanborn J W, Scheiling P E, Coleman E B, et al.Design and performance evaluation of a two-position variable geometry turbofan combustor[R].AIAA 84-1171, 1984.
    [5] Mongia H C.Engineering aspects of complex gas turbine combustion mixers:Part Ⅰ high ΔT[R].AIAA-2011-107, 2011.
    [6] Mongia H C.Combustion research needs for helping development of next-generation advanced combustors[R].AIAA-2001-3853, 2001.
    [7] 李锋, 尚守堂, 程明, 等.双环腔燃烧室置换单环腔燃烧室可行性研究[J].航空动力学报, 2008, 23(1):145-149. LI Feng, SHANG Shoutang, CHENG Ming, et al.Research on the feasibility of displacing the single annular combustor with a dual annular combustor[J].Journal of Aerospace Power, 2008, 23(1):145-149.(in Chinese)
    [8] 李锋, 程明, 尚守堂, 等.双环预混旋流与单、双环腔燃烧室性能对比[J].航空动力学报, 2008, 23(8):1681-1687. LI Feng, CHENG Ming, SHANG Shoutang, et al.Capability compare of twin annular premixing swirler with the single annular and dual annular combustor[J].Journal of Aerospace Power, 2008, 23(8):1681-1687.(in Chinese)
    [9] 胡正义.航空发动机设计手册:第九册 主燃烧室[M].北京: 航空工业出版社, 2000.
    [10] 高效节能发动机文集编委会.高效节能发动机文集:第四分册 燃烧室设计与试验[M].北京: 航空工业出版社, 1991.
    [11] Mongia H C.Recent progress in comprehensive modeling of gas turbine combustion[R].AIAA-2008-1445, 2008.
    [12] Mongia H C.Perspective of combustion modeling for gas turbine combustors[R].AIAA-2004-0156, 2004.
    [13] Mongia H C.On continuous NOx reduction of aero-propulsion engines[R].AIAA-2010-1329, 2010.
    [14] Mongia H C, Roub M A, Danis A.Swirl cup modeling[R].AIAA-2001-3576, 2001.
    [15] Hsiao G, Mongia H C.Swirl cup modeling:Part Ⅱ inlet boundary conditions[R].AIAA-2003-1350, 2003.
    [16] Hsiao G, Mongia H C.Swirl cup modeling:Part Ⅲ grid independent solution with different turbulence models[R].AIAA-2003-1349, 2003.
    [17] LI Guoqiang, Gutmark E J.Combustion characteristics of a multiple swirl spray combustor[R].AIAA-2003-0489, 2003.
    [18] LI Guoqiang, Gutmark E J.Experimental and numerical studies of velocity field of a triple annular swirler[R].ASME Paper GT-2002-30069, 2002.
  • 加载中
计量
  • 文章访问数:  1368
  • HTML浏览量:  3
  • PDF量:  1267
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-10
  • 刊出日期:  2014-05-28

目录

    /

    返回文章
    返回