留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于燃烧室多反应器模型的民用涡扇发动机排放预测

曹铭栋 王占学 蔡元虎 刘增文 龚昊

曹铭栋, 王占学, 蔡元虎, 刘增文, 龚昊. 基于燃烧室多反应器模型的民用涡扇发动机排放预测[J]. 航空动力学报, 2014, (5): 1042-1052.
引用本文: 曹铭栋, 王占学, 蔡元虎, 刘增文, 龚昊. 基于燃烧室多反应器模型的民用涡扇发动机排放预测[J]. 航空动力学报, 2014, (5): 1042-1052.
CAO Ming-dong, WANG Zhan-xue, CAI Yuan-hu, LIU Zeng-wen, GONG Hao. Civilian turbofan engine emission prediction based on combustor multi-reactor model[J]. Journal of Aerospace Power, 2014, (5): 1042-1052.
Citation: CAO Ming-dong, WANG Zhan-xue, CAI Yuan-hu, LIU Zeng-wen, GONG Hao. Civilian turbofan engine emission prediction based on combustor multi-reactor model[J]. Journal of Aerospace Power, 2014, (5): 1042-1052.

基于燃烧室多反应器模型的民用涡扇发动机排放预测

基金项目: 

工业与信息化部民用飞机专项科研项目

详细信息
    作者简介:

    曹铭栋(1985- ),男,重庆人,博士生,主要从事发动机总体设计研究.

  • 中图分类号: V231.1;TP301.6

Civilian turbofan engine emission prediction based on combustor multi-reactor model

  • 摘要: 选用燃油JetA为航空燃料,建立了简化火焰锋面模型、燃烧化学平衡模型、燃烧动力学模型、燃油雾化模型、燃油蒸发模型及污染排放生成模型.采用基于燃烧室多反应器模型对发动机在不同工作状态下的排放产物NOx、未燃碳氢化合物(unburned hydrocarbons,UHC)和CO进行了计算.结果表明:燃烧室内火焰温度越高,NOx排放量越大.在发动机工作在低转速工况下时,燃油液滴的雾化直径大,造成CO与UHC排放量增加.基于燃烧室多反应器模型计算通用性强、速度快,适合与发动机性能程序相结合,在发动机设计阶段对发动机不同工作状态下的排放产物含量进行预测计算.

     

  • [1] Rizk N K, Mongia H C.Emissions predictions of different gas turbine combustors[R].AIAA 94-118, 1994.
    [2] Baughcum S L, Tritz T G, Hendersion S C, et al.Scheduled civil aircraft emission inventories for 1992:database development and analysis[R].NASA Contractor Report 4700, 1996.
    [3] Visser W P J, Kluiters S C A.Modeling the effects of operating conditions and alternative fuels on gas turbine performance and emissions[R].NLR-TP-98629, 1998.
    [4] Hammond D C Jr, Mellor A M.Analytical calculations for the performance and pollutant emissions of gas turbine combustors[J].Combustion Science and Technology, 1971, 4(1):101-112.
    [5] Sturgess G J, McKinney R, Morfird S.Modification of combustor stoichiometry distribution for reduced NOx emission from aircraft engines[R].ASME Paper 92-GT-108, 1992.
    [6] McBride B J, Gordon S.Computer program for calculation of complex chemical equilibrium compositions and applications[R].NASA Technical Report RP 1311, 1994.
    [7] McBride B J, Gordon S.Computer program for calculation of complex chemical equilibrium compositions and applications: users manual and program description.NASA Technical Report RP 1311, 1996.
    [8] Lefebvre A H.Gas turbine combustion[M].Philadelphia:Taylor and Francis, 1999.
    [9] Fluent Incorporated. Fluent 6.2 user's guide[M].Lebanon:Fluent Incorporated, 2005.
    [10] Westenberg A A.Kinetics of NO and CO in lean, premixed hydrocarbon-air flames[J].Combustion Science and Technology, 1971, 4(1):59-64.
    [11] Westbrook C K, Dryer F L.Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J].Combustion Science and Technology, 1981, 27(2):31-43.
    [12] Lefebvre A H.Atomization and sprays[M].New York:Taylor and Francis, 1989.
    [13] Lefebvre A H.Gas turbine combustion[M].New York:Hemisphere Publishing Corporation, 1983.
    [14] Miller J A, Bowman C T.Mechanism and modeling of nitrogen chemistry in combustion[J].Progress in Energy and Combustion Science, 1989, 15(4):287-338.
    [15] Glassman I.Combustion[M].London:Academic Press, 1996.
    [16] Baulch D L, Drysdale D D, Horne D G, et al.Evaluated kinetic data for high temperature reactions:Volume 2 homogeneous gas phase reactions of the H2-N2-N2O system[M].London:Butterworths, 1973.
    [17] Roekaerts D, Peeters T.Turbulent reacting flow[M].Deflt:Deflt University Press, 1997.
    [18] Drake M C, Blint R J.Calculations of NOx formation pathways in propagating laminar, high pressure premixed CH4/air flames[J].Combustion Science and Technology, 1991, 75(4):261-285.
    [19] De Soete G G.Overall reaction rates of NO and N2 formation from fuel nitrogen[R].Pittsburgh:15th International Symposium on Combustion, 1975.
    [20] Edelman R B, Fortune O F.A quasi-global chemical kinetic model for the finite rate combustion of hydrocarbon fuels with application to turbulent burning and mixing in hypersonic engines and nozzles[C]//AIAA 7th Aerospace Sciences Meeting.New York:AIAA, 1969:69-86.
    [21] Fristorm F L, Westenberg A A.Flame structure[M].New York:McGraw-Hill, 1965.
    [22] Baulch D L, Drysdale D D, Horne D G, et al.Evaluated kinetic data for high temperature reactions:Volume 3 homogeneous gas phase reactions of the O2-O3 system, the CO-O2-H2 system, and of sulphur-containing species[M].London:Butterworths, 1976.
    [23] Shakariyants S A, Van Buijtenen J P, Visserw P J.Generic geometry definition of the aircraft engine combustor chamber[R].ASME Paper GT2004-53522, 2004.
  • 加载中
计量
  • 文章访问数:  1401
  • HTML浏览量:  0
  • PDF量:  1025
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-04
  • 刊出日期:  2014-05-28

目录

    /

    返回文章
    返回