留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于涡轮导向器增燃技术的总体性能与燃烧组织

郑海飞 唐豪 李明 莫妲

郑海飞, 唐豪, 李明, 莫妲. 基于涡轮导向器增燃技术的总体性能与燃烧组织[J]. 航空动力学报, 2014, (5): 1053-1061.
引用本文: 郑海飞, 唐豪, 李明, 莫妲. 基于涡轮导向器增燃技术的总体性能与燃烧组织[J]. 航空动力学报, 2014, (5): 1053-1061.
ZHENG Hai-fei, TANG Hao, LI Ming, MO Da. Overall performance and combustion organization based on turbine inter-vane burning technology[J]. Journal of Aerospace Power, 2014, (5): 1053-1061.
Citation: ZHENG Hai-fei, TANG Hao, LI Ming, MO Da. Overall performance and combustion organization based on turbine inter-vane burning technology[J]. Journal of Aerospace Power, 2014, (5): 1053-1061.

基于涡轮导向器增燃技术的总体性能与燃烧组织

基金项目: 

国家自然科学基金(51076064);江苏省“六大人才高峰”第五批高层次人才项目(2008136);江苏省普通高校研究生科研创新计划(CXLX12_0152);中央高校基本科研业务费专项资金

详细信息
    作者简介:

    郑海飞(1986- ),男,河南安阳人,博士生,主要从事热力机械总体性能分析研究和涡轮燃烧技术研究.

    通讯作者:

    唐豪 hao.tang@nuaa.edu.cn

  • 中图分类号: V231.1

Overall performance and combustion organization based on turbine inter-vane burning technology

  • 摘要: 为了使航空发动机达到高推质比、低燃油消耗率、低污染以及拓宽稳定工作范围的目标,应使用涡轮导向器增燃技术在涡轮导向器叶片间喷油点火再次燃烧,提高涡轮内燃气温度,从而提高发动机的总体性能.阐述了涡轮导向器增燃技术具有提高航空发动机总体性能的潜在优势,分析研究了该技术中组织燃烧的关键技术、参数和机理问题,得出如下结论:①对于射流旋流方案,径向凹槽对燃烧室出口温度分布起决定性作用;降低燃烧凹环内当量比,可提高燃烧效率,从而降低CO,UHC(未燃碳氢化合物),NOx 等污染物排放量.②当二次气流角为60°时,射流涡流方案各项燃烧性能较好.

     

  • [1] Sirignano W A, Delplanque J P, Liu F.Selected challenges in jet and rocket engine combustion research[R].AIAA 97-2701, 1997.
    [2] Sirignano W A, Liu F.Performance increases for gas-turbine engines through combustion inside the turbine[J].Journal of Propulsion and Power, 1999, 15(1):111-118.
    [3] 程本林, 唐豪, 徐夏, 等.带TIB的涡扇发动机性能研究[J].航空发动机, 2010, 36(6):19-22. CHENG Benlin, TANG Hao, XU Xia, et al.Performance study on turbofan engine with turbine inter burner[J].Aeroengine, 2010, 36(6):19-22.(in Chinese)
    [4] 李明, 唐豪, 张超, 等.一种新型涡轮叶间燃烧室的数值模拟[J].航空动力学报, 2012, 27(1):55-62. LI Ming, TANG Hao, ZHANG Chao, et al.Numerical simulation of a novel turbine inter-vane burner[J].Journal of Aerospace Power, 2012, 27(1):55-62.(in Chinese)
    [5] 李明, 唐豪, 莫妲, 等.当量比对涡轮叶间燃烧性能影响的数值模拟[J].燃烧科学与技术, 2012, 18(2):161-168. LI Ming, TANG Hao, MO Da, et al.Numerical simulaiton of influence of equivalence ratio on turbine inter-vane burner[J].Journal of Combustion Science and Technology, 2012, 18(2):161-168.(in Chinese)
    [6] 莫妲, 唐豪, 李明, 等.带不同凹腔结构涡轮间燃烧室数值模拟[J].航空发动机, 2012, 38(1):33-36. MO Da, TANG Hao, LI Ming, et al.Numerical simulaiton of turbine inter-blade burner(TIB) with different axial cavity shapes[J].Aeroengine, 2012, 38(1):33-36.(in Chinese)
    [7] 郑海飞, 唐豪.基于Φ函数的等熵膨胀过程数学模型[J].航空动力学报, 2012, 27(9):2035-2040. ZHENG Haifei, TANG Hao.Study of mathematical model of isentropic expansion process based on Φ function[J].Journal of Aerospace Power, 2012, 27(9):2035-2040.(in Chinese)
    [8] 郑海飞, 唐豪.涡轮内等温燃烧数学模型的建立与研究[J].航空学报, 2012, 33(8):1400-1405. ZHENG Haifei, TANG Hao.Research on mathematical model of isentropic combustion process inside the turbine[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1400-1405.(in Chinese)
    [9] Ramohalli K N R.Isothermal combustion for improved efficiencies[R].AIAA 87-1999, 1987.
    [10] Zelina J, Ehret J, Hangcock R D, et al.Ultra-compact combustion technology using high swirl for enhance burning rate[R].AIAA-2002-3725, 2002.
    [11] Greenwood R T.Numerical analysis and optimization of the ultra compact combustor[R].AFIT/GAE/ENY/05-M10, 2005.
    [12] Thornburg H, Sekar B, Zelina J, et al.Numerical study of an inter-turbine burner(ITB) concept with curved radial vane[R].AIAA-2007-649, 2007.
    [13] Thibaud V M, TANG Hao.Numerical investigation turbine inter-blade(TIB) concepts with two different radial vane cavity shapes[R].Nanjing:7th International Conference on Computational and Experimental Engineering and Sciences, 2011.
    [14] 李明.不同结构导向器对涡轮叶间补燃室性能影响的研究[D].南京:南京航空航天大学, 2012. LI Ming.Research on the influence of guide vane structure on the performance of turbine inter-vane burner[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2012.(in Chinese)
    [15] 莫妲.燃烧环对涡轮叶间燃烧室性能影响的研究[D].南京:南京航空航天大学, 2012. MO Da.Analysis of turbine inter-vane burner(TIB) with different combustion ring shapes[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2012.(in Chinese)
    [16] Sekar B, Thornburg H J, Briones A M, et al.Effect of trapped vortex combustion with radial vane cavity arrangements on predicted inter-turbine burner performance[R].AIAA-2009-4603, 2009.
    [17] Thornburg H J, Briones A M, Sekar B.Enhanced mixing in trapped vortex combustor with protuberances:Part 1 single-phase nonreacting flow[R].AIAA-2011-3421, 2011.
    [18] Briones A M, Sekar B, Thornburg H J.Enhanced mixing in trapped vortex combustor with protuberances: Part 2 two-phase reacting flow[R].AIAA-2011-3422, 2011.
    [19] 张弛, 林宇震, 刘高恩.冲压转子发动机切向驻涡燃烧室[J].航空发动机, 2007, 33(4):30-35. ZHANG Chi, LIN Yuzhen, LIU Gaoen.Tangential trapped vortex combustor for ramgen[J].Aeroengine, 2007, 33(4):30-35.(in Chinese)
    [20] 沈维道, 蒋智敏, 童钧耕.工程热力学[M].北京:高等教育出版社, 2001.
    [21] 廉筱纯, 吴虎.航空发动机原理[M].西安:西北工业大学出版社, 2005.
    [22] 骆广琦, 桑增产, 王如根, 等.航空燃气涡轮发动机数值仿真[M].北京:国防工业出版社, 2007.
    [23] 程本林.提高涡轮发动机性能的新概念方法:涡轮通道内补燃循环性能研究[D].南京:南京航空航天大学, 2011. CHENG Benlin.A new concept of turbojet and turbofan engine performance increases through turbine inter-blade burner[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2011.(in Chinese)
    [24] Lewis G D.Centrifugal-force effects on combustion[J].Symposium (International) on Combustion, 1973, 14(1):413-419.
    [25] Yonezawa Y, Toh H, Goto S, et al.Development of the jet-swirl high loading combustor[R].AIAA 90-2451, 1990.
    [26] Parks A K.Desensitizing flame structure and exhaust emissions to flow parameters in an ultra-compact combustor[R].AFIT/GAE/ENY/12-M33, 2012.
  • 加载中
计量
  • 文章访问数:  1437
  • HTML浏览量:  2
  • PDF量:  977
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-24
  • 刊出日期:  2014-05-28

目录

    /

    返回文章
    返回