留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同台阶高度对中心分级燃烧室点火熄火性能的影响

付镇柏 林宇震 傅奇慧 张弛

付镇柏, 林宇震, 傅奇慧, 张弛. 不同台阶高度对中心分级燃烧室点火熄火性能的影响[J]. 航空动力学报, 2014, (5): 1062-1070.
引用本文: 付镇柏, 林宇震, 傅奇慧, 张弛. 不同台阶高度对中心分级燃烧室点火熄火性能的影响[J]. 航空动力学报, 2014, (5): 1062-1070.
FU Zhen-bo, LIN Yu-zhen, FU Qi-hui, ZHANG Chi. Effect of different step heights on ignition and blowout performance of internally-staged combustor[J]. Journal of Aerospace Power, 2014, (5): 1062-1070.
Citation: FU Zhen-bo, LIN Yu-zhen, FU Qi-hui, ZHANG Chi. Effect of different step heights on ignition and blowout performance of internally-staged combustor[J]. Journal of Aerospace Power, 2014, (5): 1062-1070.

不同台阶高度对中心分级燃烧室点火熄火性能的影响

详细信息
    作者简介:

    付镇柏(1987- ),男,山东济宁人,博士生,主要从事航空发动机燃烧方面研究.

  • 中图分类号: V231.2

Effect of different step heights on ignition and blowout performance of internally-staged combustor

  • 摘要: 设计了一种贫油燃烧中心分级燃烧室,采用单头部矩形试验件,试验研究了3种不同台阶高度对点火熄火性能的影响.试验中只有预燃级喷嘴供油工作,在常温常压、常温低压条件下进行了贫油点火试验,在常温常压、加温常压下进行了贫油熄火试验.结果表明:台阶高度越大,贫油点火边界越宽,同时贫油熄火边界越宽;进口温度的升高有助于改善贫油熄火性能,并缩小3种方案贫油熄火油气比的差距,在320~570K的进口温度范围内,贫油熄火油气比的最大差距由40%减小到13%;3种方案都具有较好的常温负压点火性能,且在0.5%~1.5%的火焰筒进出口总压降下,贫油点火油气比差异不大,最大相差不超过10%.

     

  • [1] Birch N T.2020 vision:the prospects for large civil aircraft propulsion[R].International Council of Aeronautical Sciences, ICAS 2000-1.1.1, 2000.
    [2] 彭云晖, 许全宏, 张弛, 等.我国大飞机发动机低污染燃烧室发展考虑[R].北京:大型飞机关键技术高层论坛暨中国航空学会2007年学术年会, 2007.
    [3] International Civil Aviation Organization.International standards and recommended practices environmental protection annex 16 to the convention on international civil aviation:Volume Ⅱaviation engine emissions[R].Convention on International Civil Aviation-Doc7300, 1993.
    [4] Lefebvre A H.Gas turbine combustion[M].2nd ed.Philadelphia:Taylor and Francis, 1999.
    [5] 林宇震, 许全宏, 刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社, 2008.
    [6] Mongia H C, Dodds W.Low emissions propulsion engine combustor technology evolution:past, present and future[R].International Council of Aeronautical Sciences, ICAS2004-6.9.2, 2004.
    [7] Committee on Aviation Environmental Protection.Report of the independent experts to CAEP/8 on the second NOx review and the establishment of medium and long term technology goals for NOx[R].International Civil Aviation Organization, ICAO 9953, 2010.
    [8] Foust M J, Thomsen D.Development of the GE aviation low emission TAPS combustor for next generation aircraft engines[R].AIAA-2012-0936, 2012.
    [9] Lazik W, Doerr T, Bake B.Low NOx combustor development for the engine 3E core engine demonstrator[R]. International Society for Air Breathing Engines, ISABE 2007-1190, 2007.
    [10] Mongia H C.TAPS:a 4th generation propulsion combustor technology for low emissions[R].AIAA-2003-2657, 2003.
    [11] Dhanuka S K, Driscoll J F, Mongia H C.Instantaneous flow structures in a reacting gas turbine combustor[R].AIAA-2008-4683, 2008.
    [12] Dhanuka S K, Temme J E, Driscoll J F, et al.Unsteady aspects of lean premixed-prevaporized(LPP) gas turbine combustor:flame-flame interactions[R].AIAA-2010-1148, 2010.
    [13] Dhanuka S K, Temme J E, Driscoll J F, et al.Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J].Proceedings of the Combustion Institute, 2009, 32(2):2901-2908.
    [14] Lazik W, Doerr T, Bake S, et al.Development of lean-burn low-NOx combustion technology at Rolls-Royce Deutschland[R].ASME Paper 2008-GT-51115, 2008.
    [15] Yamamoto T, Shimodaira K, Krosawa Y, et al.Research and development of staging fuel nozzle for aero-engine[R].ASME Paper 2009-GT-59852, 2009.
    [16] Yamamoto T, Shimodaira K, Krosawa Y, et al.Investigations of a staged fuel nozzle for aero-engines by multi-sector combustor test[R].ASME Paper 2010-GT-23206, 2010.
    [17] Matsuyama R, Kobayashi M, Ogata H, et al.Development of a lean staged combustor for small aero-engines[R].ASME Paper 2012-GT-68272, 2012.
    [18] Fujiwara H, Shimodaira K, Hayashi S, et al.Suppression of NOx emission of a lean staged combustor for an aircraft engine[R].ASME Paper 2011-GT-46256, 2011.
    [19] Kobayashi M, Ogata H, Oda T, et al.Improvement on ignition performance for a lean staged low NOx combustor[R].ASME Paper 2011-GT-46187, 2011.
    [20] 颜应文, 李红红, 赵坚行, 等.双环预混旋流低污染燃烧室数值模拟[J].航空动力学报, 2009, 24(9):1923-1929. YAN Yingwen, LI Honghong, ZHAO Jianxing, et al.Numerical study of low emissions for twin annular premixing swirler combustor[J].Journal of Aerospace Power, 2009, 24(9):1923-1929.(in Chinese)
    [21] 刘殿春, 董玉玺, 尚守堂, 等.单环腔中心分级燃烧室流场数值模拟[J].航空动力学报, 2010, 25(6):1251-1257. LIU Dianchun, DONG Yuxi, SHANG Shoutang, et al.Numerical simulation of the flow field in a single annular concentric staged combustor[J].Journal of Aerospace Power, 2010, 25(6):1251-1257.(in Chinese)
    [22] FU Zhenbo, LI Jibao, LIN Yuzhen.Experimental investigation on ignition performance of LESS combustor[R].ASME Paper 2011-GT-45786, 2011.
    [23] 林宇震, 林培华, 许全宏, 等.复合式收扩套筒空气雾化喷嘴燃烧室点火研究[J].航空动力学报, 2007, 22(3):342-346. LIN Yuzhen, LIN Peihua, XU Quanhong, et al.Research on ignition performance of a hybrid airblast atomizer combustor with convergent-divergent sleeve[J].Journal of Aerospace Power, 2007, 22(3):342-346.(in Chinese)
    [24] Mellor A M.Design of modern turbine combustors[M].London:Academic Press, 1990.
    [25] Law C K.Combustion physics[M].New York:Cambridge University Press, 2006.
  • 加载中
计量
  • 文章访问数:  1258
  • HTML浏览量:  0
  • PDF量:  1035
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-05
  • 刊出日期:  2014-05-28

目录

    /

    返回文章
    返回