留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级旋流预燃区补氧对常压点火特性的影响

王柏森 张弛 林宇震 姜文彬

王柏森, 张弛, 林宇震, 姜文彬. 多级旋流预燃区补氧对常压点火特性的影响[J]. 航空动力学报, 2014, (5): 1086-1090.
引用本文: 王柏森, 张弛, 林宇震, 姜文彬. 多级旋流预燃区补氧对常压点火特性的影响[J]. 航空动力学报, 2014, (5): 1086-1090.
WANG Bo-sen, ZHANG Chi, LIN Yu-zhen, JIANG Wen-bin. Influence of oxygen addition in multi-swirl pilot zone on atmospheric pressure ignition characteristics[J]. Journal of Aerospace Power, 2014, (5): 1086-1090.
Citation: WANG Bo-sen, ZHANG Chi, LIN Yu-zhen, JIANG Wen-bin. Influence of oxygen addition in multi-swirl pilot zone on atmospheric pressure ignition characteristics[J]. Journal of Aerospace Power, 2014, (5): 1086-1090.

多级旋流预燃区补氧对常压点火特性的影响

详细信息
    作者简介:

    王柏森(1989- ),男,山东烟台人,硕士生,主要从事航空发动机燃烧室研究.

  • 中图分类号: V23

Influence of oxygen addition in multi-swirl pilot zone on atmospheric pressure ignition characteristics

  • 摘要: 在常温常压进口条件下开展点火试验,研究对象为多级旋流空气雾化喷嘴模型燃烧室,在火焰筒压降为1%~6%工况下分别采用20J和12J点火能量的电火花点火器进行点火试验,控制预燃区补氧空气流量比在0~0.04范围内,研究了多级旋流空气雾化喷嘴的点火油气比变化规律.结果表明:在点火油气比足够小的情况下,预燃区补氧流量越高,临界进口速度越大;在相同点火能量和火焰筒压降下,预燃区补氧空气流量比越高,点火油气比越小;随着预燃区补氧空气流量比增大到一个阈值(20J点火能量时为0.01,12J点火能量时为0.015),点火油气比曲线的发展趋势将发生变化;当预燃区补氧空气流量比继续增大到另一个关键阈值(20J点火能量时为0.025,12J点火能量时为0.03),点火油气比不再发生明显改变.

     

  • [1] 林宇震, 许全宏, 刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社, 2008.
    [2] Caines B N, Hicks R A, Wilson C W.Influence of sub-atmospheric conditions on the performance of an airblast atomiser[R].AIAA-2001-3573, 2001.
    [3] Lefebvre A H.Gas turbine combustion[M].2nd ed.Philadelphia:Taylor and Francis, 1999.
    [4] 陈能坤, 周雁.燃油增温对高空低压点火性能影响的实验研究[J].推进技术, 1996, 17(6):69-72. CHEN Nengkun, ZHOU Yan.Effect of advanced fuel temperature on the high altitude ignition performance[J].Journal of Propulsion Technology, 1996, 17(6):69-72.(in Chinese)
    [5] Chen N K, Zhao Y H, Wu S S, et al.Effect of oxygen addition on ignition of aero-gas turbine at simulated altitude facility[J].Journal of Energy, 1982, 6(6):425-429.
    [6] Liu C Y, Chen G, Sipcz N, et al.Characteristics of oxy-fuel combustion in gas turbines[J].Applied Energy, 2012, 89(1):387-394.
    [7] Chin J S.Analysis of the effect of oxygen addition on minimum ignition energy[R].AIAA 82-1160, 1982.
    [8] Kutne P, Kapadia B K, Meier W, et al.Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor[J].Proceedings of the Combustion Institute, 2011, 33(2):3383-3390.
    [9] Ardha V R, Dam B, Love N, et al.Characterization of oxy-fuel flames in a swirl based combustor[R].AIAA-2012-3786, 2012.
    [10] Keating E L, Gupta A K.Effects of oxygen enrichment on the predicted indicated performance of an IC engine[R].AIAA 94-3826-CP, 1994.
    [11] Werle S, Wilk R K.Ignition of methane and propane in high-temperature oxidizers with various oxygen concentrations[J].Fuel, 2010, 89(8):1833-1839.
    [12] 王玉峰, 段小龙.冲压发动机点火前内流场数值仿真研究[J].火箭推进, 2006, 32(6):20-22. WANG Yufeng, DUAN Xiaolong.Numerical study of the ramjet engine inner flow before ignition[J].Journal of Rocket Propulsion, 2006, 32(6):20-22.(in Chinese)
    [13] 薛鑫, 林宇震, 张弛.火焰筒压力损失对点火特性的影响[J].航空动力学报, 2012, 27(10):2229-2235. XUE Xin, LIN Yuzhen, ZHANG Chi.Effects of liner pressure loss on combustor ignition performances[J].Journal of Aerospace Power, 2012, 27(10):2229-2235.(in Chinese)
    [14] Gupta A K.Effect of swirl and flow distribution on the spray flame characteristics.Las Vegas:Energy Conversion Engineering Conference and Exhibit, 2000.
    [15] Dagaut P, Cathonnet M.The ignition, oxidation, and combustion of kerosene:a review of experimental and kinetic modeling[J].Progress in Energy and Combustion Science, 2006, 32(1):48-92.
    [16] Gupta A K, Damm T, Charagundla S R, et al.Role of oxygen-enriched atomization in kerosene spray flames[J].Journal of Propulsion and Power, 2000, 16(5):845-852.
    [17] Gupta A K, Damm T, Cook C, et al.Effect of oxygen-enriched atomization air on the characteristics of spray flames.Reno:35th Aerospace Sciences Meeting, 1997.
    [18] Bane S P M, Ziegler J L, Boettcher P A, et al.Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen[J].Journal of Loss Prevention in the Process Industries, 2013, 26(2):290-294.
  • 加载中
计量
  • 文章访问数:  1465
  • HTML浏览量:  6
  • PDF量:  923
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-08
  • 刊出日期:  2014-05-28

目录

    /

    返回文章
    返回