留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improved uncertainty propagation method of dynamic model for Mars entry spacecraft

FU Hui-min XIAO Qiang WU Yun-zhang

FU Hui-min, XIAO Qiang, WU Yun-zhang. Improved uncertainty propagation method of dynamic model for Mars entry spacecraft[J]. 航空动力学报, 2014, (5): 1223-1233.
引用本文: FU Hui-min, XIAO Qiang, WU Yun-zhang. Improved uncertainty propagation method of dynamic model for Mars entry spacecraft[J]. 航空动力学报, 2014, (5): 1223-1233.
FU Hui-min, XIAO Qiang, WU Yun-zhang. Improved uncertainty propagation method of dynamic model for Mars entry spacecraft[J]. Journal of Aerospace Power, 2014, (5): 1223-1233.
Citation: FU Hui-min, XIAO Qiang, WU Yun-zhang. Improved uncertainty propagation method of dynamic model for Mars entry spacecraft[J]. Journal of Aerospace Power, 2014, (5): 1223-1233.

Improved uncertainty propagation method of dynamic model for Mars entry spacecraft

基金项目: 

National Basic Research Program of China (2012CB720000)

详细信息
    作者简介:

    FU Hui-min,E-mail:fuhuimin@263.net

  • 中图分类号: V41

Improved uncertainty propagation method of dynamic model for Mars entry spacecraft

Funds: 

National Basic Research Program of China (2012CB720000)

  • 摘要: In order to research the uncertainty propagation laws of Mars entry dynamic equations for the Mars entry phase, an improved method was presented for analyzing the effect of the initial state uncertainties and uncertainty factor on the system state in the state trajectories. When applying the method to the entry phase of one of the NASA Mars exploration missions, the simulation results agreed well with the Monte Carlo method, especially the flight path angle simulation at least reaching 92%. It is found that the improved method can not only predict the uncertainty propagation laws with high accuracy of at least 92% in flight path angle simulation and large application scope from -0.1 degree to 0.1 degree, compared with local linearization method, but also save several hours relative to Monte Carlo method.

     

  • [1] Braun R D.Mars exploration entry, descent, and landing challenges[J].Journal of Spacecraft and Rockets, 2007, 44 (2):310-323.
    [2] Brand T, Fuhrman L, Geller D, et al.GN&C technology needed to achieve pinpoint landing accuracy at Mars[R].AIAA-2004-4748, 2004.
    [3] Desai P N, Schoenenberger M, Cheatwood F M.Mars exploration rover six-degree-of-freedom entry trajectory analysis[J].Journal of Spacecraft and Rockets, 2006, 43(5):1019-1025.
    [4] Wolf A A, Graves C, Powell R, et al.Systems for pinpoint landing at Mars[R].Maui, US:AAS/AIAA 14th Space Flight Mechanics Meeting, 2005.
    [5] LI Shuang, ZHANG Liu.Autonomous navigation and guidance scheme for precise and safe planetary landing[J].Aircraft Engineering and Aerospace Technology, 2009, 81 (6):516-521.
    [6] Chu C C.Development of advanced entry, descent, and landing technologies for future Mars missions[C]//Proceedings of IEEE Aerospace Conference.Big Sky, US:IEEE, 2006:4-11.
    [7] Way D W, Powell R W, Chen A, et al.Mars Science Laboratory:entry, descent, and landing system performance[C]//Proceedings of the 2007 IEEE Aerospace Conference.Big Sky, US:IEEE, 2007:1-19.
    [8] SHEN Haijun, Seywald H, Powell R W.Desensitizing the pin-point landing trajectory on Mars[R].AIAA-2008-6943, 2008.
    [9] Caflisch R E.Monte Carlo and quasi-Monte Carlo methods[J].Acta Numerica, 1998, 7:1-49.
    [10] Wolfhard J.Rugged free energy landscapes:common computational approaches to spin glasses, structural glasses and biological macromolecules[M].Berlin, Germany:Springer-Verlag, 2008.
    [11] Brown R G, Hwang P Y C.Introduction to random signals and applied Kalman filtering[M].Chichester, UK:Wiley, 1992.
    [12] REN Gaofeng, CUI Hutao, CUI Pingyuan, et al.A rapid uncertainty propagation method for pre-parachute phase of Mars entry[C]//Proceedings of the 2011 Chinese Control and Decision Conference.Mianyang Sichuan:IEEE, 2011:3124-3147.(in Chinese)
    [13] Julier S J, Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE, 2004, 92 (3):401-422.
    [14] Sengupta P, Bhattacharya R.Uncertainty analysis of hypersonic flight using multi-resolution Markov operators[R].AIAA-2008-6298, 2008.
    [15] Prabhakar A, Fisher J, Bhattacharya R.Polynomial chaos-based analysis of probabilistic uncertainty in hypersonic flight dynamics[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):222-234.
    [16] Park S H.Nonlinear trajectory[D].Michigan:University of Michigan, 2007.
  • 加载中
计量
  • 文章访问数:  982
  • HTML浏览量:  4
  • PDF量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-01
  • 刊出日期:  2014-05-28

目录

    /

    返回文章
    返回