留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡桨发动机螺旋桨实时建模技术

邓志伟 黄向华 田超

邓志伟, 黄向华, 田超. 涡桨发动机螺旋桨实时建模技术[J]. 航空动力学报, 2014, 29(2): 434-440. doi: 10.13224/j.cnki.jasp.2014.02.024
引用本文: 邓志伟, 黄向华, 田超. 涡桨发动机螺旋桨实时建模技术[J]. 航空动力学报, 2014, 29(2): 434-440. doi: 10.13224/j.cnki.jasp.2014.02.024
DENG Zhi-wei, HUANG Xiang-hua, TIAN Chao. Real-time modeling of propeller in a turboprop engine[J]. Journal of Aerospace Power, 2014, 29(2): 434-440. doi: 10.13224/j.cnki.jasp.2014.02.024
Citation: DENG Zhi-wei, HUANG Xiang-hua, TIAN Chao. Real-time modeling of propeller in a turboprop engine[J]. Journal of Aerospace Power, 2014, 29(2): 434-440. doi: 10.13224/j.cnki.jasp.2014.02.024

涡桨发动机螺旋桨实时建模技术

doi: 10.13224/j.cnki.jasp.2014.02.024
基金项目: 国家自然科学基金(61104067)

Real-time modeling of propeller in a turboprop engine

  • 摘要: 基于螺旋桨片条理论对叶素进行受力分析,推导了螺旋桨拉力和功率等参数的计算公式,建立了螺旋桨实时数学模型,将模型求解归结于干涉角的迭代,并指出模型保证实时性的关键在于迭代算法的收敛速度.通过分析迭代函数及其导数关系,提出一种干涉角初值设置方法,并提出采用割线法代替导数法能加快迭代运算.仿真结果与实验数据对比分析表明:基于叶素受力分析得到螺旋桨拉力和功率的计算精度满足要求,干涉角初值设置以及基于割线法的迭代收敛速度能满足涡桨发动机控制系统实时仿真的需要.

     

  • [1] 张子东.A400M战术运输机简介及设计特点分析[J].航空科学技术, 2006(2):16-19. ZHANG Zidong.Brief introduction and analysis of design characteristic of A400M tactical transports[J].Aeronautical Science & Technology, 2006(2):16-19.(in Chinese)
    [2] 吴涛.欧罗巴之鹰:欧洲A400M大型运输机全解析[J].现代兵器, 2008(10):18-30. WU Tao.Eagle of Europa:full resolution of A400M large-scale transport of Europe[J].Modern Weaponry, 2008(10):18-30.(in Chinese)
    [3] 周盛, 顾高墀, 潘杰元, 等.航空螺旋桨与桨扇[M].北京:北京航空航天大学出版社, 2005.
    [4] Koch L D.Design and performance calculations of a propeller for very high altitude flight[R].NASA TM-1998-206637, 1998.
    [5] Schilling J C, Adamson A P, Bathori J, et al.Propeller/fan-pitch feathering apparatus:United States, 4913623[P].1990-04-03.
    [6] Day S G.Aircraft propeller control:United States, 4928241[P].1990-05-22.
    [7] 田超, 黄向华, 邓志伟.涡轮螺旋桨发动机建模与控制仿真研究[J].航空动力学报, 2010, 25(11):2599-2605. TIAN Chao, HUANG Xianghua, DENG Zhiwei.Modeling and simulation research of turboprop engine control technology[J].Journal of Aerospace Power, 2010, 25(11):2599-2605.(in Chinese)
    [8] HUANG Xianghua, ZHANG Tianhong, TIAN Chao.Rotation potential method based axia compressor low-speed characteristics expansion prediction in aero-engine modeling[C]//Proceedings of the 13th IASTED international Conference on Control and Applications.Vancouver, Canada:IASTED, 2011:110-114.
    [9] Biemann D, Conway R N.Propeller charts for the determination of the rotational speed for the maximum ratio of the propulsive efficiency to the special fuel consumption[R].NACA-TR-749, 1940.
    [10] Burger C, Hartfield R, Burkhalter J.Performance and noise optimization of a propeller using the vortex lattice method and a genetic algorithm[R].AIAA-2007-1883, 2007.
    [11] Burger C.Propeller performance analysis and multidisciplinary optimization using a genetic algorithm[D].Alabama, US:Auburn University, 2007.
    [12] 赵忠.螺旋桨特性风洞实验技术研究[D].西安:西北工业大学, 2007. ZHAO Zhong.Research on experiment technology of propeller performance in wind tunnel[D].Xi'an:Northwest Polytechnical University, 2007.(in Chinese)
    [13] Schulten J B H M.Advanced propeller performance calculation by a lifting surface method[J].Journal of Propulstion and Power, 1996, 12(3):477-485.
    [14] Hess J L, Valarezot W O.Calculation of steady flow about propellers using a surface panel method[J].Journal of Propulsion and Power, 1985, 1(6):470-476.
    [15] 刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社, 2006.
  • 加载中
计量
  • 文章访问数:  1739
  • HTML浏览量:  3
  • PDF量:  1150
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-25
  • 刊出日期:  2014-02-28

目录

    /

    返回文章
    返回