留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格林函数法求解含移动介质轴向导热的稳态温度场

赵国昌 杜霞 宋丽萍 李静

赵国昌, 杜霞, 宋丽萍, 李静. 格林函数法求解含移动介质轴向导热的稳态温度场[J]. 航空动力学报, 2014, (6): 1249-1260. doi: 10.13224/j.cnki.jasp.2014.06.001
引用本文: 赵国昌, 杜霞, 宋丽萍, 李静. 格林函数法求解含移动介质轴向导热的稳态温度场[J]. 航空动力学报, 2014, (6): 1249-1260. doi: 10.13224/j.cnki.jasp.2014.06.001
ZHAO Guo-chang, DU Xia, SONG Li-ping, LI Jing. Solving steady-state temperature fields with axial conduction in moving media using Green’s function method[J]. Journal of Aerospace Power, 2014, (6): 1249-1260. doi: 10.13224/j.cnki.jasp.2014.06.001
Citation: ZHAO Guo-chang, DU Xia, SONG Li-ping, LI Jing. Solving steady-state temperature fields with axial conduction in moving media using Green’s function method[J]. Journal of Aerospace Power, 2014, (6): 1249-1260. doi: 10.13224/j.cnki.jasp.2014.06.001

格林函数法求解含移动介质轴向导热的稳态温度场

doi: 10.13224/j.cnki.jasp.2014.06.001
基金项目: 

航空科学基金(20131954004)

详细信息
    作者简介:

    赵国昌(1964- ),男,北京人,教授、博士生导师,博士,主要从事航空动力工程中的流动传热及热管理研究.

  • 中图分类号: V231.1;TG156.99

Solving steady-state temperature fields with axial conduction in moving media using Green’s function method

  • 摘要: 用格林函数法求解了考虑移动介质轴向导热影响的稳态温度场,推导了第1类和第2类非齐次边界条件下求解稳态温度场的数学表达式,利用特征值和特征函数获得了格林函数解,证实格林函数法可以解决非齐次边界条件下的稳态传热问题.以平行板间和圆管内均匀速度移动介质的稳态传热为例,获得了在半无限长壁面和在有限长壁面有均匀热流密度两种情况下所对应的温度场的无量纲解析解,分析了移动介质轴向导热与Pex/H之间的关系.结果表明:在所分析的两种热流密度边界条件下,Pe越大无量纲温度越小;在半无限大区域有均匀热流密度条件下,无壁面热流密度区域温度变化越剧烈,有均匀壁面热流密度的区域无量纲温度随x/H的变化几乎不受Pe大小的影响;在有限区域有均匀热流密度条件下,与半无限大区域均匀加热的情况有显著差异,在全计算域内温度变化越剧烈.

     

  • [1] Beck J V,Cole K D,Haji-Sheikh A,et al.Heat conduction using Green's functions[M]. Washington DC:Hemisphere,1992.
    [2] 奥齐西克M N.热传导[M].俞昌铭,译.北京:高等教育出版社,1983.
    [3] Nagasue H.Steady-state heat transfer with axial conduc-tion in laminar flow in a circular tube with a specified temperature or heat flux wall[J].International Journal of Heat Mass Transfer,1981,24(11):1823-1832.
    [4] Haji-Sheikh A,Amos D E,Beck J V.Axial heat conduction of heat through a moving fluid in a semiinfinite region[J]. International Journal of Heat Mass Transfer,2008,51(19):4651-4658.
    [5] Haji-Sheikh A,Amos D E,Beck J V.Temperature field in a moving semi infinite region with a prescribed wall heat flux[J].International Journal of Heat Mass Transfer,2009,52(7):2092-2101.
    [6] Tiselj I,Hetsroni G,Mavko B,et al.Effect of axial con-duction on the heat transfer in micro-channels[J].International Journal of Heat Mass Transfer,2004,47(12):2551-2565.
    [7] Haji-Sheikh A,Minkowycz W J,Sparrow E M.Green's function solution of temperature field for flow in porous passages[J].International Journal of Heat Mass Transfer 2004,47(22):4685-4695.
    [8] Lahjomri J,Oubarra A.Analytical solution of the Graetz problem with axial conduction[J].Journal of Heat Transfer,1999,121(4):1078-1083.
    [9] Michelsen M L,Villadsen J.The Graetz problem with axial heat conduction[J].International Journal of Heat Mass Transfer,1974,17(11):1391-1402.
    [10] Haji-Sheikh A,Beck J V,Amos D E.Axial heat conduction effects in the entrance region of parallel plate ducts[J].International Journal of Heat Mass Transfer,2008,10(25):5811-5822.
    [11] Haji-Sheikh A,Beck J V,Amos D E.Axial heat conduction effects in the entrance region of circular ducts[J].Heat Mass Transfer,2009,45(3):331-341.
    [12] Sharma A,Chakraborty S.Semi-analytical solution of the extended Graetz problem for combined electroosmotically and pressure-driven microchannel flows with step-change in wall temperature[J].International Journal of Heat Mass Transfer,2008,51(19):4875-4885.
    [13] Haji-Sheikh A.Determination of heat transfer in ducts with axial conduction by variational calculus[J].Journal of Heat Transfer,2009,131(9):091702.1-091702.11.
    [14] Faghri M,Welty J R.Analysis of transfer,including axial fluid conduction for laminar tube flow with arbitrary circumferential wall heat flux variation[J].International Journal of Heat Mass Transfer,1978,21(3):317-323.
    [15] Najjar R G,Laohakul C.An approximate solution to the Graetz problem with axial conduction and prescribed wall heat flux[J].International Communications in Heat Mass Transfer,1986,13(3):315-324.
    [16] Nield D A,Kuznetsov A V,Xiong M.Thermally developing forced convection in a porous medium:parallel plate channel with walls at uniform temperature,with axial conduction and viscous dissipation effects[J].International Journal of Heat Mass Transfer,2003,46(4):643-651.
    [17] Kuznetsov A V,Nield D A,Xiong M.Thermally developing forced convection in a porous medium:circular ducts with walls at constant temperature,with longitudinal conduction and viscous dissipation effects[J].Transport in Porous Media,2003,53(3):331-345.
    [18] Tada S,Ichimiya K.Analysis of laminar dissipative flow and heat transfer in porous saturated circular tube with constant wall heat flux[J].International Journal of Heat Mass Transfer,2007,50(11):2406-2413.
    [19] Minkowycz W J,Haji-Sheikh A.Heat transfer in parallel-plate and circular porous passages with axial conduction[J].International Journal of Heat Mass Transfer,2006,49(13):2381-2390.
    [20] Yen D H Y,Beck J V.Green's function and three-dimensional steady-state heat-conduction problems in a two-layered composite[J].Journal of Engineering Mathe Matics,2004,49(3):305-319.
    [21] Cole K D.Computer programs for temperature in fins and slab bodies with the method of Green's functions[J]. Computer Applications in Education,2004,12(3):189-197.
    [22] Cole K D.Steady-periodic Green's functions and thermal measurement applications in rectangular coordinates[J].Journal of Heat Transfer,2006,128(7):709-716.
    [23] Cole K D.Steady-periodic heating in parallel-plate microchannel flow with participating walls[J].International Journal of Heat Mass Transfer,2010,53(5):870-878.
    [24] Carslaw H S,Jaejer J C.Conduction of heat in solids[M].London:Clarendon Press,1959.
    [25] 狄拉克 P A M.量子力学原理[M].陈咸亨,译.北京:科学出版社,1958.
  • 加载中
计量
  • 文章访问数:  1696
  • HTML浏览量:  3
  • PDF量:  1067
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-20
  • 刊出日期:  2014-06-28

目录

    /

    返回文章
    返回