留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温氧化对EB-PVD热障涂层内部应力场分布影响的数值模拟

郝勇 齐红宇 马立强

郝勇, 齐红宇, 马立强. 高温氧化对EB-PVD热障涂层内部应力场分布影响的数值模拟[J]. 航空动力学报, 2014, (7): 1520-1526. doi: 10.13224/j.cnki.jasp.2014.07.002
引用本文: 郝勇, 齐红宇, 马立强. 高温氧化对EB-PVD热障涂层内部应力场分布影响的数值模拟[J]. 航空动力学报, 2014, (7): 1520-1526. doi: 10.13224/j.cnki.jasp.2014.07.002
HAO Yong, QI Hong-yu, MA Li-qiang. Numerical simulation of effect of high temperature oxidation on stress field distribution of EB-PVD thermal barrier coating[J]. Journal of Aerospace Power, 2014, (7): 1520-1526. doi: 10.13224/j.cnki.jasp.2014.07.002
Citation: HAO Yong, QI Hong-yu, MA Li-qiang. Numerical simulation of effect of high temperature oxidation on stress field distribution of EB-PVD thermal barrier coating[J]. Journal of Aerospace Power, 2014, (7): 1520-1526. doi: 10.13224/j.cnki.jasp.2014.07.002

高温氧化对EB-PVD热障涂层内部应力场分布影响的数值模拟

doi: 10.13224/j.cnki.jasp.2014.07.002
详细信息
    作者简介:

    郝勇(1964-),男,辽宁沈阳人,研究员,博士生,主要从事航空发动机结构及强度研究。

  • 中图分类号: V231.91

Numerical simulation of effect of high temperature oxidation on stress field distribution of EB-PVD thermal barrier coating

  • 摘要: 针对电子束物理气相沉积(EB-PVD)热障涂层(TBCs)复杂结构的特点,选用Walker黏塑性本构模型实现对其高温力学行为的准确描述.选择具有叶片曲率特征的圆管试样,并借鉴实际发动机载荷特征进行数值分析.重点考虑EB-PVD热障涂层界面的形状以及热生长氧化层(TGO)厚度变化对应力场的影响.计算结果表明,直线型界面对EB-PVD热障涂层结构的应力场改变不大,而余弦界面对EB-PVD热障涂层的应力场改变的幅度可达2倍之多;热生长氧化层的出现导致陶瓷层界面处的应力绝对值增加;无论是循环至最高温度1050℃还是冷却到100℃时,界面波谷始终受径向压应力,此处不易形成损伤,而波峰处的应力比较大,且其应力状态是损伤容易形成的部位,可以认为是陶瓷层失效与破坏的危险点.

     

  • [1] 霍武军,孙护国.先进的航空发动机涡轮叶片涂层技术[J].航空科学技术,2001(3):34-36. HUO Wujun,SUN Huguo.Advanced turbine blade coating technology for aero-engine[J].Aeronautical Science and Technology,2001(3):34-36.(in Chinese)
    [2] Clarke D R,Levi C G.Materials design for the next generation thermal barrier coatings[J].Annual Review of Materials Research,2003,33(1):383-417.
    [3] Hernandez M T,Cojocaru D,Bartsch M,et al.On the opening of a class of fatigue cracks due to thermo-mechanical fatigue testing of thermal barrier coatings[J].Computational Materials Science,2011,50(9):2561-2572.
    [4] Gabe D R,Green W A.The mathematical modelling of CMA multilayered coatings[J].Surface and Coatings Technology,1998,105(3):195-201.
    [5] 李美姮,胡望宇,孙晓峰,等.热障涂层的研究进展与发展趋势[J].材料导报,2005,19(4):41-45. LI Meiyuan,HU Wangyu,SUN Xiaofeng,et al.Recent research progress in thermal barrier coatings[J].Materials Review,2005,19(4):41-45.(in Chinese)
    [6] Spitsberg I T,Mumm D R,Evans A G.On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings[J].Materials Science and Engineering:A,2005,394(1):176-191.
    [7] Bhatnagar H,Ghosh S,Walter M E.Parametric studies of failure mechanisms in elastic EB-PVD thermal barrier coatings using FEM[J].International Journal of Solids and Structures,2006,43(14):4384-4406.
    [8] Chen W R,Wu X,Marple B R,et al.Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat[J].Surface and Coatings Technology,2005,197(1):109-115.
    [9] Janosik L A,Duffy S F.A viscoplastic constitutive theory for monolithic ceramics:Ⅰ[J].Journal of Engineering for Gas Turbines and Power,1998,120(1):155-161.
    [10] Xie W,Walker K P,Jordan E H,et al.Implementation of a viscoplastic model for a plasma sprayed ceramic thermal barrier coating[J].Journal of Engineering Materials and Technology,2003,125(2):200-207.
    [11] 耿瑞.热障涂层强度分析及寿命预测研究[D].北京:北京航空航天大学,2001. GENG Rui.Strength analysis and lifetime prediction of thermal barrier coating[D].Beijing:Beijing University of Aeronautics and Astronautics,2001.(in Chinese)
    [12] Cheng J,Jordan E H,Barber B,et al.Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system[J].Acta Materialia,1998,46(16):5839-5850.
    [13] 于慧臣,吴学仁.航空发动机设计用材料数据手册:第四册[M].北京:航空工业出版社,2010.
    [14] 魏洪亮.涡轮叶片/热障涂层结构分析方法及界面破坏的研究[D].北京:北京航空航天大学,2007. WEI Hongliang.Analysis method of turbine vane/thermal barrier coatings structures and study on interfaces failure[D].Beijing:Beijing University of Aeronautics and Astronautics,2007.(in Chinese)
    [15] Tzimas E,Müllejans H,Peteves S D,et al.Failure of thermal barrier coating systems under cyclic thermomechanical loading[J].Acta Materialia,2000,48(18):4699-4707.
    [16] Greving D J,Shadley J R,Rybicki E F.Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens[J].Journal of Thermal Spray Technology,1994,3(4):371-378.
    [17] Padture N P,Gell M,Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [18] Yang L,Liu Q X,Zhou Y C,et al.Finite element simulation on thermal fatigue of a turbine blade with thermal barrier coatings[J].Journal of Materials Science and Technology,2014,30(4):371-380.
  • 加载中
计量
  • 文章访问数:  1168
  • HTML浏览量:  7
  • PDF量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-04
  • 刊出日期:  2014-07-28

目录

    /

    返回文章
    返回