留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收-扩喷管与飞行器后体的一体化气动优化设计

任超奇 王强 胡海洋

任超奇, 王强, 胡海洋. 收-扩喷管与飞行器后体的一体化气动优化设计[J]. 航空动力学报, 2014, (10): 2294-2302. doi: 10.13224/j.cnki.jasp.2014.10.004
引用本文: 任超奇, 王强, 胡海洋. 收-扩喷管与飞行器后体的一体化气动优化设计[J]. 航空动力学报, 2014, (10): 2294-2302. doi: 10.13224/j.cnki.jasp.2014.10.004
REN Chao-qi, WANG Qiang, HU Hai-yang. Integrated aerodynamic optimization design of convergent-divergent nozzle and vehicle afterbody[J]. Journal of Aerospace Power, 2014, (10): 2294-2302. doi: 10.13224/j.cnki.jasp.2014.10.004
Citation: REN Chao-qi, WANG Qiang, HU Hai-yang. Integrated aerodynamic optimization design of convergent-divergent nozzle and vehicle afterbody[J]. Journal of Aerospace Power, 2014, (10): 2294-2302. doi: 10.13224/j.cnki.jasp.2014.10.004

收-扩喷管与飞行器后体的一体化气动优化设计

doi: 10.13224/j.cnki.jasp.2014.10.004
详细信息
    作者简介:

    任超奇(1987- ),男,山西长治人,博士生,主要从事进排气系统、红外隐身研究.

  • 中图分类号: V275

Integrated aerodynamic optimization design of convergent-divergent nozzle and vehicle afterbody

  • 摘要: 以轴对称收-扩喷管与飞行器后体的气动特性为研究对象,基于部分正交多项式的响应面法结合自编程序进行了三维流场的数值模拟.选取流量系数和推力系数为优化指标,选取收敛半角、喉道半径、扩张半角、底部面积和尾部收缩角为研究对象,在两种工况下进行了分析.通过响应面函数的构造及求解,结果表明:扩张半角和收敛半角对气动性能的影响程度约为90%;只考虑流量系数时,收敛半角、喉道半径和底部面积的影响程度约为85%;只考虑推力系数时,扩张半角的影响程度约为85%;只考虑H=0km,Ma=0工况时,扩张半角、收敛半角和喉道半径的影响程度达到90%以上;只考虑H=20km,Ma=2工况时,扩张半角和收敛半角的影响程度达到85%以上.

     

  • [1] 吴达,郑克扬.排气系统的气动热力学[M].北京:北京航空航天大学出版社,1989.
    [2] Sams H.F-15 propulsion system design and development[R].AIAA 75-1042,1975.
    [3] Martens R E.F-15 nozzle-afterbody integration[J].Journal of Aircraft,1976,13(5):327-333.
    [4] Berrier B L.Effect of nonlifting empennage surface on single-engine afterbody/nozzle drag at Mach numbers from 0.5 to 2.2[R].NASA-TN-D-8326,1977.
    [5] Goldberg U C,Gorski J J,Chakravarthy S R.Afterbody flowfield computations at transonic and supersonic Mach numbers[R].Journal of Propulsion,1985,3(1):56-61.
    [6] Bergman B K,Treiber D A.The application of Euler and Navier-Stokes methodology to 2-D and 3-D nozzle-afterbody flowfields[R].AIAA 88-0274,1988.
    [7] Compton W B.Navier-Stokes simulation of nozzle-afterbody flows with jets at off-design conditions[R].AIAA 91-3207,1991.
    [8] 王占学,黄杰,唐狄毅.喷管/飞行器后体一体化数值模拟[J].西北工业大学学报,2000,18(4):587-590. WANG Zhanxue,HUANG Jie,TANG Diyi.Numerical simulation of integration of nozzle/vehicle-afterbody[J].Journal of Northwestern Polytechnical University,2000,18(4):587-590.(in Chinese)
    [9] 徐嘉,蔡晋生,段焰辉.轴对称喷气式飞机后体减阻优化设计[J].航空工程进展,2010,1(4):356-360. XU Jia,CAI Jinsheng,DUAN Yanhui.Optimization design of drag reduction for the axisymmetric afterbody of a jet airplan[J].Advances in Aeronautical Science and Engineering,2010,1(4):356-360.(in Chinese)
    [10] 谢业平,尚守堂,李建榕,等.基于安装性能的航空发动机中间状态喷管调节计划优化[J].航空动力学报,2014,29(1):175-180. XIE Yeping,SHANG Shoutang,LI Jianrong,et al.Optimization of aero-engine nozzle control schedule under the maximum dry thrust condition based on installation performance[J].Journal of Aerospace Power,2014,29(1):175-180.(in Chinese)
    [11] 任露泉.试验设计及其优化[M].北京:科学出版社,2011.
    [12] 吴雄.固体发动机燃气二次喷射理论与试验研究[D].长沙:国防科学技术大学,2007. WU Xiong.Gas secondary injection theoretical and experimental study of solid engine[D].Changsha:National University of Defense Technology,2007.(in Chinese)
    [13] 李喜喜.飞行器排气系统气动和红外隐身一体化设计研究[D].北京:北京航空航天大学,2013. LI Xixi.Integrated design of aerodynamic and infrared stealth for aircraft exhaust system[D].Beijing:Beijing University of Aeronautics and Astronautics,2013.(in Chinese)
    [14] 胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙:国防科学技术大学,2006. HU Jianxin.Boron propellant solid rocket ramjet combustion chamber work process studies[D].Changsha:National University of Defense Technology,2006.(in Chinese)
    [15] 陈小前.飞行器总体优化设计理论与应用研究[D].长沙:国防科学技术大学,2002. CHEN Xiaoqian.Optimization design theory and application of the vehicle system[D].Changsha:National University of Defense Technology,2002.(in Chinese)
    [16] 罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D].长沙:国防科学技术大学,2004. LUO Shibin.Research on airframe/engine integration issues and multidisciplinary design optimization methods for airbreathing hypersonic vehicle[D].Changsha:National University of Defense Technology,2004.(in Chinese)
    [17] 赵选民.试验设计方法[M].北京:科学出版社,2005.
    [18] Gupta R,Yos J,Thompson R.A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000K[R].NASA Technical Memorandum,TM101528,1989.
    [19] 张世铮.燃气热力性质的数学公式表示法[J].工程热物理学报,1980,1(1):10-16. ZHANG Shizheng.Polynomial expressions of thermodynamic properties of the products of combustion of fuel with air[J].Journal of Engineering Thermophysics,1980,1(1):10-16.(in Chinese)
    [20] HU Haiyang,BAI Peng,WANG Qiang.High efficient numerical simulation of infrared radiation from a hot exhaust nozzle[J].Communications in Computational Physics,2012,11(4):1182-1204.
    [21] Carlson J R.Computational prediction of isolated performance of an axisymmetric nozzle at Mach number 0.90[R].NASA Technical Memorandum,TM4506,1994.
  • 加载中
计量
  • 文章访问数:  1466
  • HTML浏览量:  3
  • PDF量:  994
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-21
  • 刊出日期:  2014-10-28

目录

    /

    返回文章
    返回