留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EFFD方法的自然层流短舱优化设计

何小龙 白俊强 夏露 陈颂 乔磊

何小龙, 白俊强, 夏露, 陈颂, 乔磊. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, (10): 2311-2320. doi: 10.13224/j.cnki.jasp.2014.10.006
引用本文: 何小龙, 白俊强, 夏露, 陈颂, 乔磊. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, (10): 2311-2320. doi: 10.13224/j.cnki.jasp.2014.10.006
HE Xiao-long, BAI Jun-qiang, XIA Lu, CHEN Song, QIAO Lei. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, (10): 2311-2320. doi: 10.13224/j.cnki.jasp.2014.10.006
Citation: HE Xiao-long, BAI Jun-qiang, XIA Lu, CHEN Song, QIAO Lei. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, (10): 2311-2320. doi: 10.13224/j.cnki.jasp.2014.10.006

基于EFFD方法的自然层流短舱优化设计

doi: 10.13224/j.cnki.jasp.2014.10.006
基金项目: 

省部级重点项目

详细信息
    作者简介:

    何小龙(1989- ),男,河北沧州人,硕士生,主要从事飞行器设计研究.

  • 中图分类号: V221.3

Natural laminar flow nacelle optimization design based on EFFD method

  • 摘要: 采用extended free-form deformation(EFFD)方法研究了自然层流(natural laminar flow,NLF)短舱的气动外形优化设计方法.使用基于Bernstein基函数的EFFD方法完成了NLF短舱剖面的参数化,利用基于k-ε SST(shear stress transport)两方程湍流模型的γ-θ转捩模型进行自然转捩预测,结合EFFD、一种混合动网格方法、Kriging代理模型和改进的粒子群算法(particle swarm optimization,PSO)建立了针对NLF短舱气动外形的优化设计框架.采用该框架分别对通气NLF短舱和带动力NLF短舱进行优化设计.单独通气NLF短舱优化结果的外表面实现48%的层流,阻力系数比初始 通气NLF短舱减小了0.0003.带动力NLF短舱的优化结果外表面保持了41%的层流.这些结果表明采用相关技术建立的优化设计框架在NLF短舱设计中具有一定应用价值.

     

  • [1] LIN Yujing,Robinson T,Riordan D,et al.Implementation of Menter's transition model on an isolated natural laminar flow nacelle[J].AIAA Journal,2011,49(4):824-835.
    [2] 朱自强,吴宗成,丁举春.层流流动控制技术及应用[J].航空学报,2011,32(5):765-784. ZHU Ziqiang,WU Zongcheng,DING Juchun.Laminar flow control technology and application[J].Acta Aeronautica et Astronautica Sinica,2011,32(5):765-784.(in Chinese)
    [3] Holmes B J,Obara C J,Yip L P.Natural laminar flow experiments on modern airplane surfaces[R].NASA TP-2256,1984.
    [4] Younghans J L,Lahti D J.Analytical and experimental studies on natural laminar flow nacelles[R].AIAA 84-0034,1984.
    [5] Radespiel R,Horstmann K H,Redeker G.Feasibility study on the design of a laminar flow nacelle[J].Journal of Aircraft,1990,27(11):959-965.
    [6] Riedel H,Horstmann K H,Ronzheimer A.Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J].Aerospace Science and Technology,1998,2(1):1-12.
    [7] Medina H,Early J,Riordan D.Influence of surface waviness for laminar flow nacelle applications[R].San Antonio:27th AIAA Applied Aerodynamics Conference,2009.
    [8] 王修方.涡扇发动机动力短舱的设计[J].民用飞机设计与研究,1998,12(1):30-36. WANG Xiufang.Design of turbofan nacelle considering jet effect[J].Civil Aircarft Design and Research,1998,12(1):30-36.(in Chinese)
    [9] Coquillart S.Extended free-form deformation:a sculpturing tool for 3D geometric modeling[J].Computer Graphics,1990,24(4):187-196.
    [10] Sederberg T W,Parry S R.Freeform deformation of solid geometric models[J].Computer Graphics,1986,20(4):151-160.
    [11] 朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [12] Sarakinos S S,Amoiralis E,Nikolos I K.Exploring freeform deformation capabilities in aerodynamic shape parameterization[R].Belgrade:International Conference on Computer as a Tool,2005.
    [13] Samareh J A.Aerodynamic shape optimization based on free-form deformation[R].New York:10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,2004.
    [14] 黄江涛,高正红,白俊强,等.应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J].航空学报,2012,33(10):1817-1826. HUANG Jiangtao,GAO Zhenghong,BAI Junqiang,et al.Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J].Acta Aeronautica et Astronautica Sinica,2012,33(10):1817-1826.(in Chinese)
    [15] Langtry R B.A correlation-based transition model using local variables for unstructed parallelized CFD codes[R].Stuttgart:Sruttgart University Report,2006.
    [16] Kennedy J,Eberhart R C.Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks Perth.WA,Australia:IEEE,1995:1942-1948.
    [17] 白俊强,尹戈玲,孙智伟.基于二阶振荡及自然选择的随机权重混合粒子群算法[J].控制与决策,2012,27(10):1459-1464,1470. BAI Junqiang,YIN Geling,SUN Zhiwei.Random weighted hybrid particle swarm optimization algorithm based on second order oscillation and natural selection[J].Control and Decision,2012,27(10):1459-1464,1470.(in Chinese)
    [18] Simpson T W,Mauery T M,Korte J J.Kriging models for global approximation in simulation-based multidisciplinary design optimization[J].AIAA Journal,2001,39(12):2233-2241.
    [19] Spekreijse S P,Prananta B B,Kok J C.A simple,robust and fast algorithm to compute deformations of multi-block structured grids[R].NLR-TP-2002-105,2002.
    [20] 谭兆光,陈迎春,李杰,等.机体/动力装置一体化分析中的动力影响效应数值模拟[J].航空动力学报,2009,24(8):1766-1772. TAN Zhaoguang,CHEN Yingchun,LI Jie,et al.Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J].Journal of Aerospace Power,2009,24(8):1766-1772.(in Chinese)
    [21] Langtry R B,Menter F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal,2009,47(12):2894-2906.
    [22] 方开泰.均匀设计法[M].北京:科学出版社,1994.
  • 加载中
计量
  • 文章访问数:  1806
  • HTML浏览量:  4
  • PDF量:  968
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 刊出日期:  2014-10-28

目录

    /

    返回文章
    返回