Application on MLP high order reconstruction scheme
-
摘要: 在有限体积框架下,利用MLP(multi-dimensional limiting process)系列重构格式结合HLL-HLLC(Harten-Lax-van Leer with contact)近似黎曼求解器,同时引入激波探测函数进一步降低MLP在光滑流动区域的数值耗散,数值模拟了超声速前台阶流动、结冰翼型的非定常流动、高超声速双楔流动和DLR F6-WB跨声速流场,研究了MLP系列格式在可压缩复杂流场中的表现.结果表明:在多维空间中,MLP格式能够在如强斜激波与网格线不重合等复杂流场数值模拟中保持严格的流场单调性;具有和传统MUSCL(monotone upstream-centered schemes for conservation laws)格式类似的计算效率,可以实现5阶,甚至更高阶重构;数值耗散更低,捕获更准确的激波位置,对航空工程数值模拟具有重要意义.Abstract: Under the frame of finite volume methodology, MLP (multi-dimensional limiting process) scheme was further modified by introducing a shock-detect function to decrease the numerical dissipation in smooth regions, then supersonic flow over facing step, unsteady flow over an airfoil with ice accretion, hypersonic flow over double wedge configuration flow and subsonic flow over DLR F6-WB complex configuration were investigated by utilizing MLP high order reconstruction scheme and HLL-HLLC (Harten-Lax-van Leer with contact) approximate Riemann solver to validate the performances of proposed schemes in sophisticated compressible flow simulations. The research illustrates that: MLP can keep strict monotone flow characteristics even in the complex high-dimension fluid simulations consisting of strong oblique shock waves not aligned with grids; it has the similar computational efficiency compared with traditional MUSCL (monotone upstream-centered schemes for conservation laws) scheme and can achieve fifth or even higher order reconstruction; it features low numerical dissipation so that more accurate shock position can be captured, therefore MLP scheme is promising for aerospace engineering applications.
-
[1] 张涵信,沈孟育.计算流体力学:差分方法的原理和应用[M].北京:国防工业出版社,2003. [2] 王保国,刘淑艳,姜国义,等.高阶格式及其在内外流场计算中的应用[J].航空动力学报,2008,23(1):55-63. WANG Baoguo,LIU Shuyan,JIANG Guoyi,et al.High-order scheme and its application to the computation of the internal and external flow field[J].Journal of Aerospace Power,2008,23(1):55-63.(in Chinese) [3] 王超,吴颂平.一种适用于热流计算的改进WENO格式[J].航空动力学报,2012,27(11):2499-2504. WANG Chao,WU Songping.Improved weighted essential non-oscillatory methods in hypersonic heat-flux simulation[J].Journal of Aerospace Power,2012,27(11):2499-2504.(in Chinese) [4] 陈志夫,文桂林,王艳广,等.用于气动声学计算的非均匀网格紧致差分格式[J].航空动力学报,2013,28(1):180-187. CHEN Zhifu,WEN Guilin,WANG Yanguang,et al.Compact finite difference schemes on non-uniform meshes for computational aeroacoustics[J].Journal of Aerospace Power,2013,28(1):180-187.(in Chinese) [5] DENG Xiaogang,Maekawa H.Compact high-order accurate nonlinear schemes[J].Journal of Computational Physics,1997,130(1):77-91. [6] Godunov S K.A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations[J].Matematicheskii Sbornik,1959,47(89):271-306. [7] Harten A,Engquist B,Stanley O,et al.Uniformly high order accurate essentially non-oscillatory schemes[J].Journal of Computational Physics,1987,71(2):231-323. [8] Van Leer B.Towards the ultimate conservation difference scheme V:a second-order sequel to Godunov's method[J].Journal of Computational Physics,1979,32(1):101-136. [9] LIU Xudong,Osher S,Chan T F.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1):200-212. [10] Kim K H,Kim C G.Accurate,efficient and monotonic numerical methods for multi-dimensional compressible flows:Part Ⅱ multi-dimensional limiting process[J].Journal of Computational Physics,2005,208(2):570-615. [11] Gerlinger P.High-order multi-dimensional limiting for turbulent flows and combustion[R].AIAA 2011-296,2011. [12] 傅林,高正红,左英桃.基于HLL-HLLC的高阶WENO格 式及其应用研究[J].计算力学学报,2014,31(1):128-134. FU Lin,GAO Zhenghong,ZUO Yingtao.High order WENO scheme based on HLL-HLLC solver and its application[J].Chinese Journal of Computational Mechanics,2014,31(1):128-134.(in Chinese) [13] 傅林,高正红,张晓东.HLL-HLLC格式的构造与应用研究[J].空气动力学学报,2014,32(1):116-122. FU Lin,GAO Zhenghong,ZHANG Xiaodong.Construction and application research of HLL-HLLC scheme[J].Acta Aerodynamic Sinica,2014,32(1):116-122.(in Chinese) [14] Shima E,Kitamura K.On new simple low-dissipation scheme of AUSM-family for all speeds[R].AIAA 2009-136,2009. [15] 傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993. [16] Ducros F,Ferrand V,Nicoud F,et al.Large-eddy simulation of the shock/turbulence interaction[J].Journal of Computational Physics,1999,152(2):517-549. [17] Reinartz B U,Ballmann J,Boyce R.Numerical investigation of wall temperature and entropy layer effects on double wedge shock/boundary layer interactions[R].AIAA 2006-8137,2006. [18] Eliasson P E,Peng S H.Drag prediction for the DLR-F6 wing-body configuration using the edge solver[J].Journal of Aircraft,2008,45(3):837-847.
点击查看大图
计量
- 文章访问数: 2323
- HTML浏览量: 10
- PDF量: 990
- 被引次数: 0