留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含噪信号经验模式分解虚假分量识别方法

李纪永 李舜酩 陈晓红 江星星

李纪永, 李舜酩, 陈晓红, 江星星. 含噪信号经验模式分解虚假分量识别方法[J]. 航空动力学报, 2014, (10): 2486-2492. doi: 10.13224/j.cnki.jasp.2014.10.028
引用本文: 李纪永, 李舜酩, 陈晓红, 江星星. 含噪信号经验模式分解虚假分量识别方法[J]. 航空动力学报, 2014, (10): 2486-2492. doi: 10.13224/j.cnki.jasp.2014.10.028
LI Ji-yong, LI Shun-ming, CHEN Xiao-hong, JIANG Xing-xing. Illusive component identification method in noisy signal EMD processing[J]. Journal of Aerospace Power, 2014, (10): 2486-2492. doi: 10.13224/j.cnki.jasp.2014.10.028
Citation: LI Ji-yong, LI Shun-ming, CHEN Xiao-hong, JIANG Xing-xing. Illusive component identification method in noisy signal EMD processing[J]. Journal of Aerospace Power, 2014, (10): 2486-2492. doi: 10.13224/j.cnki.jasp.2014.10.028

含噪信号经验模式分解虚假分量识别方法

doi: 10.13224/j.cnki.jasp.2014.10.028
基金项目: 

航空自然科学基金(2012ZD52054);青年科学基金(61403193);南京航空航天大学基本科研业务费科研项目(NS2014081)

详细信息
    作者简介:

    李纪永(1985- ),男,山东临沂人,博士生,主要从事航空发动机故障振动信号分析方面的研究.

  • 中图分类号: V233.1

Illusive component identification method in noisy signal EMD processing

  • 摘要: 针对含噪信号Hilbert-Huang变换存在虚假分量,提出改进的奇异值分解(SVD)方法进行降噪,改进包含两个部分:一是利用重构相空间代替传统矩阵如Hankel矩阵,以去掉信号冗余,再者提出奇异值能量熵分量差分法,更易于定出重构奇异值阶次;二是提出了频谱比值法对虚假分量进行辨识,更有效辨识出虚假分量.首先利用经验模式分解(EMD)得到本征模式分量(IMF),识别并剔除趋势项,重构信号,然后进行SVD,重构降噪后的信号,消除虚假分量,最后进行时频分析.联合方法应用于含噪仿真信号,信噪比(signal noise ratio,SNR)提高了5.5%,虚假分量辨识率提高至100%,用于双跨转子故障振动信号,得到正确的时频结果,表明了所提方法识别含噪信号虚假分量的有效性.

     

  • [1] Flandrin P,Rilling G,Gonçalvés P,et al.Empirical mode decomposition as a filter bank[J].Signal Processing Letters,2004,11(2):112-114.
    [2] Huang N E,Shen Z H,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London:Series A Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
    [3] Riling G,Flandrin P.On empirical mode decomposition and its algorithms[R].IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03,2003.
    [4] Huang N E,Wu M L C,Long S R,et al.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J].Proceedings of the Royal Society of London:Series A Mathematical,Physical and Engineering Sciences,2003,459(2037):2317-2345.
    [5] 程军圣,于德介,杨宇.基于 EMD 和 SVM 的滚动轴承故障诊断方法[J].航空动力学报,2006,21(3):575-580. CHENG Junsheng,YU Dejie,YANG Yu.Fault diagnosis of roller bearings based on EMD and SVM[J].Journal of Aerospace Power,2006,21(3):575-580.(in Chinese)
    [6] 黄迪山.经验模态分解中虚假模态分量消除法[J].振动、测试与诊断,2011,31(3):381-384. HUANG Dishan.Effect of sampling on empirical mode decomposition and correction[J].Journal of Sound and Vibration,2011,31(3):381-384.(in Chinese)
    [7] Wang H,Chen P.A feature extraction method based on information theory for fault diagnosis of reciprocating machinery[J].Sensors,2009,9(4):2415-2436.
    [8] 雷达,钟诗胜.基于奇异值分解和经验模态分解的航空发动机健康信号降噪方法[J].吉林大学学报,2012,42(2):1-8. LEI Da,ZHONG Shisheng.Aircraft engine health signal denoising based on SVD and EMD[J].Journal of Jilin University,2012,42(2):1-8.(in Chinese)
    [9] Wu Z H,Huang N E,Long S R,et al.On the trend,detrending,and variability of nonlinear and nonstationary time series[J].Proceedings of the National Academy of Sciences,2007,104(38):14889-14894.
    [10] Jha S K,Yadava R D S.Denoising by singular value decomposition and its application to electronic nose data processing[J].Sensors Journal,2011,11(1):35-44.
    [11] 张超,陈建军,徐亚兰.基于EMD 分解和奇异值差分谱理论的轴承故障诊断方法[J].振动工程学报,2010,24(5):539-545. ZHANG Chao,CHEN Jianjun,XU Yalan.A bearing fault diagnose method based on EMD and difference spectrum theory of singular value[J].Journal of Vibration Engineering,2010,24(5):539-545.(in Chinese)
    [12] Sivakumar B.A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers[J].Journal of Hydrology,2002,258(1):149-162.
    [13] Fazel M,Pong T K,Sun D,et al.Hankel matrix rank minimization with applications to system identification and realization[J].Journal on Matrix Analysis and Applications,2013,34(3):946-977.
    [14] Rosenblatt M.Asymptotic behavior of eigenvalues of Toeplitz forms[J].Selected Works of Murray Rosenblatt,2011,11(6):205-213.
    [15] Lee K C,Ou J S,Fang M C.Application of SVD noise-reduction technique to PCA based radar target recognition[J].Progress in Electromagnetic Research,2008,81(5):447-459.
    [16] Gerald C F,Wheatley P O.Numerical analysis[M].New Jersey:Addison-Wesley,2003.
    [17] Chen Q,Huang N,Riemenschneider S,et al.A B-spline approach for empirical mode decompositions[J].Advances in Computational Mathematics,2006,24(1):171-195.
    [18] Harte D.Multifractals:theory and applications[M].Boca Raton:Chemical Rubber Company Press,2010.
  • 加载中
计量
  • 文章访问数:  1247
  • HTML浏览量:  4
  • PDF量:  905
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-09
  • 刊出日期:  2014-10-28

目录

    /

    返回文章
    返回