留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体火箭发动机推力室内壁寿命预估

孙冰 丁兆波 康玉东

孙冰, 丁兆波, 康玉东. 液体火箭发动机推力室内壁寿命预估[J]. 航空动力学报, 2014, 29(12): 2980-2986. doi: 10.13224/j.cnki.jasp.2014.12.027
引用本文: 孙冰, 丁兆波, 康玉东. 液体火箭发动机推力室内壁寿命预估[J]. 航空动力学报, 2014, 29(12): 2980-2986. doi: 10.13224/j.cnki.jasp.2014.12.027
SUN Bing, DING Zhao-bo, KANG Yu-dong. Life prediction of liquid rocket engine thrust chamber liner wall[J]. Journal of Aerospace Power, 2014, 29(12): 2980-2986. doi: 10.13224/j.cnki.jasp.2014.12.027
Citation: SUN Bing, DING Zhao-bo, KANG Yu-dong. Life prediction of liquid rocket engine thrust chamber liner wall[J]. Journal of Aerospace Power, 2014, 29(12): 2980-2986. doi: 10.13224/j.cnki.jasp.2014.12.027

液体火箭发动机推力室内壁寿命预估

doi: 10.13224/j.cnki.jasp.2014.12.027
详细信息
    作者简介:

    孙冰(1960-), 女, 黑龙江佳木斯人, 教授、博士生导师, 博士, 研究领域为发动机热防护与冷却技术.

  • 中图分类号: V238

Life prediction of liquid rocket engine thrust chamber liner wall

  • 摘要: 为了分析推力室内壁失效机理及准确预估推力室内壁寿命,对推力室进行流-热-固耦合计算.流-热耦合为热-固耦合提供准确的热和机械载荷,热-固耦合模型对推力室内壁在循环加载下的变形进行非线性平面应变有限元分析.通过计算,得到了推力室内壁在单循环各阶段的应力-应变分布和循环加载下的变形过程,并进行了寿命预估.结果表明:采用的流-固耦合策略能准确地实现流-热耦合模块向热-固耦合模块的载荷传递,能为结构分析提供准确的边界条件.在预冷、后冷和松弛阶段,内壁承受拉应力;在工作阶段,内壁承受压应力.随着循环次数的增加,内壁残余应力和应变不断增大,内壁向燃烧室内鼓起和不断变薄,冷却通道中心最先失效.所采用的分析模型能够模拟内壁在循环热和机械载荷下的变形过程,用于预估推力室内壁的循环寿命.

     

  • [1] Hannum N P,Kasper H J,Pavli A J.Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers[R].AIAA 76-685,1976.
    [2] Newell J F,Rajagopal K R.Integrated structural risk-based approach for design and analysis of combustion chamber liners[R].AIAA 92-3418,1992.
    [3] Cook R T.Space shuttle orbiter engine main combustion chamber cooling and life[R].AIAA 73-1310,1973.
    [4] Popp M,Schmidt G.Rocket engine combustion chamber design concepts for enhanced life[R].AIAA 96-3303,1996.
    [5] Porowski J S,Badlani M,Kasrale B,et al.Development of a simplified procedure for thrust chamber life prediction[R].NASA-OR-165585,1981.
    [6] Wagner W R,Shoji J M.Advanced regenerative-cooling techniques for future space transportation systems[R].AIAA 75-1247,1975.
    [7] Miller R W.Low-cycle fatigue analysis of a cooled copper combustion chamber[R].AIAA 74-1079,1974.
    [8] In-Kyung S.A subscale-based rocket combustor life prediction methodology[R].AIAA-2005-3570,2005.
    [9] Asraff A K,Sunil S,Muthukumar R,et al.New concepts in structural analysis and design of double walled LPRE thrust chambers[R].AIAA-2006-4368,2006.
    [10] Kuhl D,Woschnak A,Haidn O J.Coupled heat transfer and stress analysis of rocket combustion chambers[R].AIAA 98-3373,1998.
    [11] Kuhl D,Riccius J,Haidn O J.Thermomechanical analysis and optimization of cryogenic liquid rocket engines[J].Journal of Propulsion and Power,2002,18(4):835-846.
    [12] Kuhl D.Thermomechanical analysis using finite element methods with particular emphasis on rocket combustion chambers[R].Jyvskyl,Finnish:European Congress on Computation Methods in Applied Sciences and Engineering,2004.
    [13] Riccius J R,Zametaev E B.Stationary and dynamic thermal analyses of cryogenic liquid rocket combustion chamber walls[R].AIAA-2002-3694,2002.
    [14] Riccius J R,Haidn O J,Zametaev E B,et al.Influence of time dependent effects on the estimated life time of liquid rocket combustion chamber walls[R].AIAA-2004-3670,2004.
    [15] Riccius J R,Zametaev E B,Haidn O K,et al.Comparison of 2d and 3d structural FE-analyses of LRE combustion chamber walls[R].AIAA-2006-4365,2006.
    [16] 栾叶君,孙纪国,田昌义,等.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,35(5):17-21. LUAN Yejun,SUN Jiguo,TIAN Changyi,et al.Failure analysis on regeneratively cooled wall of a hydrogen-oxygen thrust chamber[J].Journal of Rocket Propulsion Technology,2006,35(5):17-21.(in Chinese)
    [17] 康玉东,孙冰.燃气非平衡流再生冷却流动传热数值模拟[J].推进技术,2011,32(1):119-124. KANG Yudong,SUN Bing.Numerical simulation of regenerative cooling flow and heat transfer with nonequilibrium flow[J].Journal of Propulsion Technology,2011,32(1):119-124.(in Chinese)
    [18] KANG Yudong,SUN Bing.Numerical simulation of liquid rocket engine thrust chamber regenerative cooling[J].Journal of Thermophysics and Heat Transfer,2011,25(1):155-164.
  • 加载中
计量
  • 文章访问数:  1390
  • HTML浏览量:  2
  • PDF量:  942
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-12
  • 刊出日期:  2014-12-28

目录

    /

    返回文章
    返回