留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪形非均匀间隙封严结构影响涡轮性能的数值模拟

张晶辉 马宏伟

张晶辉, 马宏伟. 波浪形非均匀间隙封严结构影响涡轮性能的数值模拟[J]. 航空动力学报, 2015, 30(4): 865-874. doi: 10.13224/j.cnki.jasp.2015.04.013
引用本文: 张晶辉, 马宏伟. 波浪形非均匀间隙封严结构影响涡轮性能的数值模拟[J]. 航空动力学报, 2015, 30(4): 865-874. doi: 10.13224/j.cnki.jasp.2015.04.013
ZHANG Jing-hui, MA Hong-wei. Numerical simulation of effects of contoured slot seal configuration on turbine performance[J]. Journal of Aerospace Power, 2015, 30(4): 865-874. doi: 10.13224/j.cnki.jasp.2015.04.013
Citation: ZHANG Jing-hui, MA Hong-wei. Numerical simulation of effects of contoured slot seal configuration on turbine performance[J]. Journal of Aerospace Power, 2015, 30(4): 865-874. doi: 10.13224/j.cnki.jasp.2015.04.013

波浪形非均匀间隙封严结构影响涡轮性能的数值模拟

doi: 10.13224/j.cnki.jasp.2015.04.013
基金项目: 

国家自然科学基金(51161130525)

北京航空航天大学基本科研业务费-博士研究生创新基金(YWF-13-A01-17)

详细信息
    作者简介:

    张晶辉(1986-),男,河南洛阳人,博士生,主要从事叶轮机械内复杂流动研究.

  • 中图分类号: V231.3

Numerical simulation of effects of contoured slot seal configuration on turbine performance

  • 摘要: 利用数值模拟的方法研究了波浪形非均匀间隙封严结构和均匀轴向间隙封严结构下轮缘封严气流对涡轮性能的影响.研究表明:燃气入侵与出流结构受到静盘、动盘及主流切向速度的影响,以低于动盘转速同向旋转,并改变了转子的进气条件,增强了压力面马蹄涡强度,因此对转子出口流场造成很大影响.封严气流与上游导叶尾迹的相互作用引起转子通道内熵增,造成涡轮效率的下降.与均匀轴向间隙封严结构相比,波浪形非均匀间隙封严结构使大的入侵与出流结构破碎为小的结构,对涡轮性能的负面影响减小,涡轮效率提高了0.9%.结果证明了波浪形非均匀间隙封严结构在具有较好的封严效果的同时提高了涡轮性能.

     

  • [1] Cherry D, Wadia A, Beacock R, et al.Analytical investigation of a low pressure turbine with and without flow-path endwall gaps, seals and clearance features[R].ASME Paper GT2005-68492, 2005.
    [2] McLean C, Camci C, Glezer B.Mainstream aerodynamic effects due to wheelspace coolant injection in a high-pressure turbine stage:Part Ⅰ aerodynamic measurements in the stationary frame[J].Journal of Turbomachinery, 2001, 123(4):687-696.
    [3] McLean C, Camci C, Glezer B.Mainstream aerodynamic effects due to wheelspace coolant injection in a high-pressure turbine stage:Part Ⅱ aerodynamic measurements in the rotational frame[J].Journal of Turbomachinery, 2001, 123(4):697-703.
    [4] Hunter S, Manwaring S.Endwall cavity flow effects on gaspath aerodynamics in an axial flow turbine:Part Ⅰ experimental and numerical investigation[R].ASME Paper GT2000-651, 2000.
    [5] Ong J H P, Miller R J, Uchida S.The effect of coolant injection on the endwall flow of a high pressure turbine[R].ASME Paper GT2006-91060, 2006.
    [6] Erickson R D, Simon T W, Zhang L, et al.Experimental investigation of disc cavity leakage flow and hub endwall contouring in a linear rotor cascade[R].ASME Paper GT2011-46700, 2011.
    [7] Schuler P, Kurz W, Dullenkopf K, et al.The influence of different rim seal geometries on hot-gas ingestion and to-tal pressure loss in a low-pressure turbine[R].ASME Paper GT2010-22205, 2010.
    [8] Schuler P, Dullenkopf K, Bauer H J.Investigation of the influence of different rim seal geometries in a low pressure turbine[R].ASME Paper GT2011-45682, 2011.
    [9] Jenny P, Abhari R S, Rose M G, et al.Unsteady rotor hub passage vortex behavior in the presence of purge flow in an axial low pressure turbine[R].ASME Paper GT2012-69256, 2012.
    [10] Popovi Dc' I, Hodson H P.The effects of a parametric variation of the rim seal geometry on the interaction between hub leakage and mainstream flows in hp turbines[R].ASME Paper GT2012-68025, 2012.
    [11] Popovi Dc' I, Hodson H P.Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry[R].ASME Paper GT2012-68026, 2012.
    [12] Knost D G, Thole K A, Duggleby A.Evaluating a three-dimensional slot design for the combustor-turbine interface[R].ASME Paper GT2009-60168, 2009.
    [13] Michael W, Axel D, Peter A G.Reducing the demand of coolant at the sidewall of a high pressure turbine cascade by means of slot width modulation[R].ASME Paper GT2012-68325, 2012.
    [14] 周杨, 牛为民, 邹正平, 等.轮毂封严气体对高压涡轮二次流动的影响[J].推进技术, 2006, 27(6):515-520. ZHOU Yang, NIU Weimin, ZOU Zhengping, et al.Effects of coolant injection from rim seals on secondary flow in a high-pressure turbine[J].Journal of Propulsion Technology, 2006, 27(6):515-520.(in Chinese)
    [15] ZHANG Jinghui, MA Hongwei.Numerical investigation of improving turbine sealing effectiveness through slot width modification of the rim seal[R].ASME Paper GT2013-95570, 2013.
    [16] Bohn D E, Decker A, Ma H, et al.Influence of sealing air mass flow on the velocity distribution in and inside the rim seal of the upstream cavity of a 1.5-stage turbine[R].ASME Paper GT2003-38459, 2003.
    [17] Bohn D E, Decker A, Ohlendorf N, et al.Influence of an axial and radial rim seal geometry on hot gas ingestion into the upstream cavity of a 1.5-stage tur-bine[R].ASME Paper GT2006-90453, 2006.
    [18] Sharma O P, Butler T L.Predictions of endwall losses and secondary flows in axial flow turbine cascades[J].Journal of Turbomachinery, 1987, 109(2):229-236.
    [19] Ralf J, Thomas Z, Klas L, et al.Numerical simulation of the unsteady flow field in an axial gas turbine rim seal configuration[R].ASME Paper GT2004-53829, 2004.
  • 加载中
计量
  • 文章访问数:  1346
  • HTML浏览量:  0
  • PDF量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-11
  • 刊出日期:  2015-04-28

目录

    /

    返回文章
    返回