留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

率相关HTPB推进剂/衬层界面Ⅱ型内聚力模型

陈雄 钮然铭 郑健 贾登

陈雄, 钮然铭, 郑健, 贾登. 率相关HTPB推进剂/衬层界面Ⅱ型内聚力模型[J]. 航空动力学报, 2015, 30(11): 2787-2793. doi: 10.13224/j.cnki.jasp.2015.11.029
引用本文: 陈雄, 钮然铭, 郑健, 贾登. 率相关HTPB推进剂/衬层界面Ⅱ型内聚力模型[J]. 航空动力学报, 2015, 30(11): 2787-2793. doi: 10.13224/j.cnki.jasp.2015.11.029
CHEN Xiong, NIU Ran-ming, ZHENG Jian, JIA Deng. Rate-dependent cohesive zone model of the interface between HTPB propellant and insulation[J]. Journal of Aerospace Power, 2015, 30(11): 2787-2793. doi: 10.13224/j.cnki.jasp.2015.11.029
Citation: CHEN Xiong, NIU Ran-ming, ZHENG Jian, JIA Deng. Rate-dependent cohesive zone model of the interface between HTPB propellant and insulation[J]. Journal of Aerospace Power, 2015, 30(11): 2787-2793. doi: 10.13224/j.cnki.jasp.2015.11.029

率相关HTPB推进剂/衬层界面Ⅱ型内聚力模型

doi: 10.13224/j.cnki.jasp.2015.11.029
基金项目: 

总装瓶颈项目(20101019)

详细信息
    作者简介:

    陈雄(1977-),男,四川绵阳人,副教授,博士,主要从事航空宇航推进理论与工程.

  • 中图分类号: V512

Rate-dependent cohesive zone model of the interface between HTPB propellant and insulation

  • 摘要: 采用实验与反演相结合的方法构建了端羟基聚丁二烯(HTPB)推进剂/衬层界面的率相关的内聚力模型.采用改进的单搭接试件完成了HTPB推进剂/衬层界面的断裂实验研究,采用内聚力单元方法对单搭接试件进行了数值研究,结合基于Hook-Jeeves优化算法的反演识别程序,获取了不同加载率下的界面断裂参数.由于界面断裂参数具有明显的率相关性,通过构建率相关的损伤函数,构建了基于双线性内聚力模型的率相关HTPB推进剂/衬层界面Ⅱ型内聚力模型.模型预测结果和实验结果的对比相关系数大于99%,说明本文所建立的 率相关内聚力模型具有较高的准确性,能够准确描述加载率为5~200mm/min时推进剂/衬层界面的断裂性质.

     

  • [1] 许进升.复合推进剂热粘弹性本构模型实验及数值仿真研究[D].南京:南京理工大学,2013. XU Jinsheng.Experimental and numerical research on thermo-viscoelastic constitutive model of composite propellant[D].Nanjing:Nanjing University of Science and Technology,2013.(in Chinese)
    [2] 郑晓亚,柳青,王卫祥.固体装药结构界面应力分析[J].航空动力学报,2012,27(8):1861-1866. ZHENG Xiaoya,LIU Qing,WANG Weixiang.Interface stress analysis of solid motor grain structure[J].Journal of Aerospace Power,2012,27(8):1861-1866.(in Chinese)
    [3] 姜爱民,李高春,郭宇,等.黏接界面试件拉伸变形破坏过程的数字散斑相关方法分析[J].航空动力学报,2014,29(5):255-261. JIANG Aimin,LI Gaochun,GUO Yu,et al.Adhesive interface deformation and failure digital speckle correlation method[J].Journal of Aerospace Power,2014,29(5):255-261.(in Chinese)
    [4] Bazant Z P,Planas J.Fracture and size effect in concrete and other quasibrittle materials[M].Boca Raton:CRC Press,1998.
    [5] Barenblatt G I.The formation of equilibrium cracks during brittle fracture:general ideas and hypotheses,axially-symmetric cracks[J].Journal of Applied Mathematics and Mechanics,1959,23(3):622-636.
    [6] Dugdale D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8(2):100-104.
    [7] Xu C,Siegmund T,Ramani K.Rate-dependent crack growth in adhesives:I modeling approach[J].International Journal of Adhesion and Adhesives,2003,23(1):9-13.
    [8] Musto M,Alfano G.A novel rate-dependent cohesive-zone model combining damage and visco-elasticity[J].Computers and Structures,2013,118:126-133.
    [9] Wang J,Qin Q H,Kang Y L,et al.Viscoelastic adhesive interfacial model and experimental characterization for interfacial parameters[J].Mechanics of Materials,2010,42(5):537-547.
    [10] Campilho R,De Moura M,Domingues J.Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs[J].International Journal of Solids and Structures,2008,45(5):1497-1512.
    [11] NIU Ranming,ZHOU Qingchun,CHEN Xiong,et al.Experimental and numerical analysis of mode II fracture between propellant and insulation[J].International Journal of Adhesion and Adhesives,2014,52:1-10.
    [12] Chandra N,Li H,Shet C,et al.Some issues in the application of cohesive zone models for metal-ceramic interfaces[J].International Journal of Solids and Structures,2002,39(10):2827-2855.
    [13] Davila C G,Camando P P,Moura,M F.Mixed-mode decohesion ele-590ments for analyses with progressive delamination[R].Seattle:42nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conferences,2001.
    [14] Geubelle P H,Baylor J S.Impact-induced delamination of composites:a 2D simulation[J].Composites:Part B Engineering,1998,29(5):589-602.
    [15] Van den Boshi M J,Schreurs P J G,Geers M G D.An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion[J].Engineering Fracture Mechanics,2006,73(9):1220-1234.
    [16] Park K.Potential-based fracture mechanics using cohesive zone and virtual internal bond modeling[D].Illinois:University of Illinois at Urbana-Chanmpaign,2009.
    [17] ZHOU Qingchun,JU Yutao,WEI Zhen,et al.Cohesive zone modeling of propellant and insulation interface debonding[J].The Journal of Adhesion,2014,90(3):1-22.
    [18] Watkins J.Fracture toughness test for soll-cement samples in mode Ⅱ[J].International Journal of Fracture,1983,23(4):135-138.
  • 加载中
计量
  • 文章访问数:  819
  • HTML浏览量:  2
  • PDF量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 刊出日期:  2015-11-28

目录

    /

    返回文章
    返回