留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高速摄影图像处理统计分析的点火过程试验

蔡尊 王振国 孙明波 汪洪波 梁剑寒

蔡尊, 王振国, 孙明波, 汪洪波, 梁剑寒. 基于高速摄影图像处理统计分析的点火过程试验[J]. 航空动力学报, 2016, 31(5): 1105-1112. doi: 10.13224/j.cnki.jasp.2016.05.011
引用本文: 蔡尊, 王振国, 孙明波, 汪洪波, 梁剑寒. 基于高速摄影图像处理统计分析的点火过程试验[J]. 航空动力学报, 2016, 31(5): 1105-1112. doi: 10.13224/j.cnki.jasp.2016.05.011
CAI Zun, WANG Zheng-guo, SUN Ming-bo, WANG Hong-bo, LIANG Jian-han. Experiment of ignition process based on statistical analysis of image processing[J]. Journal of Aerospace Power, 2016, 31(5): 1105-1112. doi: 10.13224/j.cnki.jasp.2016.05.011
Citation: CAI Zun, WANG Zheng-guo, SUN Ming-bo, WANG Hong-bo, LIANG Jian-han. Experiment of ignition process based on statistical analysis of image processing[J]. Journal of Aerospace Power, 2016, 31(5): 1105-1112. doi: 10.13224/j.cnki.jasp.2016.05.011

基于高速摄影图像处理统计分析的点火过程试验

doi: 10.13224/j.cnki.jasp.2016.05.011
基金项目: 

国家自然科学基金(91016028)

详细信息
    作者简介:

    蔡尊(1989-),男,黑龙江哈尔滨人,博士生,研究领域为航空宇航推进理论与工程高超声速推进技术.

  • 中图分类号: V235.213

Experiment of ignition process based on statistical analysis of image processing

  • 摘要: 针对空气来流马赫数为2.1、总温为846K,总压为0.7MPa的条件下凹腔内的强迫点火过程,利用高速摄影观测了凹腔主动喷注方式的乙烯强迫点火试验.基于高速摄影图像的合成分析和概率统计,提出了能够定量分析出点火过程凹腔火焰稳定和燃烧室火焰分布的试验研究方法;利用该研究方法,采用主动喷注方式在全局当量比为0.15和0.17(相应的主动喷注当量比分别为0.04和0.06)的条件下,对比研究了采用凹腔后壁面喷注的喷注方案和采用凹腔前壁喷注和后壁面喷注相结合的喷注方案的点火试验过程;定量分析了这两种喷注方案点火后的凹腔火焰稳定和燃烧室内的火焰分布.当凹腔主动喷注当量比为0.04时,点火凹腔内并没有形成良好的局部压力反馈,火焰在点火凹腔内常以不连续形式稳定存在.当主动喷注当量比达到0.06时,整个燃烧室的火焰分布要更加均匀.针对超声速来流条件下的点火过程瞬态图像,该方法能够有效地开展定性分析和定量研究.

     

  • [1] Mastorakos E.Ignition of turbulent non-premixed flame[J].Progress in Energy and Combustion Science,2009,35(1):57-97.
    [2] 李大鹏,潘余,吴继平.几何可调喉道双模态冲压发动机点火过程试验研究[J].弹箭与制导学报,2006,26(4):210-217. LI Dapeng,PAN Yu,WU Jiping.Ignition experimental study of a variable geometrical throat dual-mode ramjet[J].Journal of Projectiles,Rockets,Missiles and Fuidance,2006,26(4):210-217.(in Chinese)
    [3] Neophytou A,Richardson E S,Mastroakos E.Spark ignition of turbulent recirculating non-premixed gas and spray flames:a model for predicting ignition probability[J].Combustion and Flame,2012,159(4):1503-1522.
    [4] Aggarwal S K.A review of spray ignition phenomena:present status and future research[J].Progress in Energy and Combustor Science,1998,24(6):565-600.
    [5] Whitehurst R B,Krauss R H,McDaniel J C.Parametric and time resolved studies of autoignition and flame holding in a clean air supersonic combustor[R].AIAA-92-3424,1992.
    [6] 李庆.基于凹腔火焰稳定器的亚燃冲压发动机燃烧室点火过程研究[D].长沙:国防科学技术大学,2010 LI Qing.Research on the ignition process of cavity-based flameholder in ramjet combustor[D].Changsha:National University of Defense Technology,2010.(in Chinese)
    [7] Yang V,Li J,Choi J Y,et al.Ignition transient in an ethylene fueled scramjet engine with air throttling[R].AIAA 2010-410,2010.
    [8] Yu K,Wilson K J,Smith R A,et al.Experimental investigation on dual-purpose cavity in supersonic reacting flows[R].AIAA 1998-723,1998.
    [9] Owens M G,Tehranian S,Segal C,et al.Flame-holding configurations for kerosene combustion in a Mach 1.8 airflow[J].Journal of Propulsion and Power,1998,14(4):456-461.
    [10] Kobayashi K,Tomiokat S,Mitani T.Supersonic flow ignition by plasma torch and H2/O2 torch[J].Journal of Propulsion and Power,2004,20(2):294-301.
    [11] 宋文艳,刘伟雄,贺伟.超声速燃烧室等离子体点火实验研究[J].实验流体力学,2006,20(4):20-24 SONG Wenyan,LIU Weixiong,HE Wei.Experimental investigation of plasma ignition in supersonic combustor[J].Journal of Experiments in Fluid Mechanics,2006,20(4):20-24.(in Chinese)
    [12] Lewis B,Elbe G.Combustion,flames and explosions of gases.[M].London:Harcourt Brace Jovanovich Publishers,1987.
    [13] 席文雄.超声速气流中的点火启动及其强化机理研究[D].长沙:国防科学技术大学,2013. XI Wenxiong.Investigation on initiation of ignition and mechanism for enhancement in supersonic flowfield[D].Changsha:National University of Defense Technology,2013.(in Chinese)
    [14] Gruber M R,Donbar J M,Carter C D,et al.Mixing and combustion studies using cavity-based flameholders in a supersonic reacting flows[J].Journal of Propulsion and Power,2004,20(5):769-779.
    [15] Rasmussen C C,Driscoll J F,Carter C D,et al.Characteristics of cavity stabilized flames in a supersonic flow[J].Journal of Propulsion and Power,2005,21(4):765-769.
    [16] Rasmussen C C,Driscoll J F,Hsu K Y.Stability limits of cavity-stabilized flames in supersonic flow[J].Proceedings of the Combustion Institute,2005,30(2):2825-2834.
    [17] Mohamed M C,Kurian J.Cavity-based injections into supersonic flow[J].Journal of Propulsion and Power,2005,21(6):1130-1132.
    [18] Mathur T,Gruber M R,Jackson K.Supersonic combustion experiments with a cavity-based fuel injector[J].Journal of Propulsion and Power,2001,17(6):1305-1312.
    [19] O'Byrne S,Stotz I,Neely A J,et al.OH PLIF imaging of supersonic combustion using cavity injection[R].AIAA 2005-3357,2005
    [20] Sick V.High speed imaging in fundamental and applied combustion research[J].Proceedings of the Combustion Institute,2013,34(2):3509-3530.
    [21] Schmit R F,Semmelmayer L F,Haverkamp L M,et al.Fourier analysis of high speed shadowgraph images around a Mach 1.5 cavity flow field[R].AIAA 2011-3961,2011.
    [22] Sun M B,Gong C,Zhang S P,et al.Spark ignition process in a scramjet combustor fueled by hydrogen and equipped with multi-cavities at Mach 4 flight condition[J].Experimental Thermal and Fluid Science,2012,43(11):90-96.
  • 加载中
计量
  • 文章访问数:  1089
  • HTML浏览量:  6
  • PDF量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-04
  • 刊出日期:  2016-05-28

目录

    /

    返回文章
    返回