Impact of heptadecance and octadecane on physical properties and SMD of kerosene
-
摘要: 讨论了正十七烷与正十八烷(C17,C18)对燃料运动黏度、密度、表面张力理化性能的影响,探究了直链烷烃对SMD(Sauter mean diameter)的影响.将Key's混合规律、Tat混合规律和多项式拟合应用于密度公式的拟合,并将Key's混合规律与对数拟合应用于运动黏度公式的拟合,得出的理化性能拟合公式精度较高;通过测量纯煤油及C17,C18混合油雾化的SMD,实验发现随着直链烷烃的质量分数的增加,混合油的运动黏度增加,SMD也随之增加,雾化效果与纯航空煤油的相比较差,而C18混合油的SMD要比C17混合油要大,并且利用密度、运动黏度的拟合公式对SMD进行预测的偏差小于0.3%.
-
关键词:
- 混合油 /
- 正十七烷 /
- 正十八烷 /
- 理化性能 /
- 索太尔平均直径(SMD)
Abstract: The impact of n-alkanes (C17~C18) on the physical properties of kerosene, including kinematic viscosity, density and surface tension was dicussed, and the effects of n-alkanes (C17~C18) on SMD (Sauter mean diameter) were investigated. The density fitting equation used Key's blending law, Tat blending law and polynomial fitting. The viscosity fitting equation used Key's blending law and logarithmic fitting. This fitting equation in this investigation have optimal accuracy. The atomization experiment shows that the SMD of blending fuels increases with the mass percentage of n-alkanes, which means that the added n-alkanes have negative effect to the atomization performance. The SMD of C18 blending fuels is larger than C17 blending fuels'. The fitting equation of physical properties are used to predict SMD of the blending fuels, and its error is less than 0.3%.-
Key words:
- blending fuel /
- heptadecane /
- octadecane /
- physical properties /
- Sauter mean diameter(SMD)
-
[1] Liu G,Wang L,Qu H,et al.Artificial neural network approaches on composition-property relationships of jet fuels based on GC-MS[J].Fuel,2007,86(16):2551-2559. [2] Cookson D J,Lloyd C P,Smith B E.Investigation of the chemical basis of kerosene (jet fuel) specification properties[J].Energy & Fuels,1987,1(5):438-447. [3] Cookson D J,Smith B E.Calculation of jet and diesel fuel properties using carbon-13 NMR spectroscopy[J].Energy & Fuels,1990,4(2):152-156. [4] Cookson D J,Lloyd C P,Smith B E.Investigation of the chemical basis of diesel fuel properties[J].Energy & Fuels,1988,2(6):854-860. [5] Cookson D J,Latten J L,Shaw I M,et al.Property-composition relationships for diesel and kerosene fuels[J].Fuel,1985,64(4):509-519. [6] Cookson D J,Smith B E,Shaw I M.Determination of hydrocarbon compound class abundances in kerosine and diesel fuels:chromatographic and nuclear magnetic resonance methods[J].Fuel,1987,66(6):758-765. [7] Fodor G E,Kohl K B.Analysis of middle distillate fuels by midband infrared spectroscopy[J].Energy & Fuels,1993,7(5):598-601. [8] Yang H,Ring Z,Briker Y,et al.Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC-MS[J].Fuel,2002,81(1):65-74. [9] Schulz H.Short history and present trends of Fischer-Tropsch synthesis[J].Applied Catalysis A:General,1999,186(1):3-12. [10] Murata K,Liu Y,Inaba M,et al.Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst[J].Energy & Fuels,2010,24(4):2404-2409. [11] Weiss W,Dulot H,Quignard A,et al.Direct coal to liquids (DCL):high quality jet fuels[C]//Proceedings of 27th Annual International Pittsburgh Coal Conference 2010.Istanbul,Turkey:Curran Associate,Inc.,2010:1060-1064. [12] Torren R,Geoffrey A,William C,et al.Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J].Topics in Catalysis,2009,52(3):241-252. [13] Demirbas A.Biofuels securing the planet's future energy needs[J].Energy Conversion and Management,2009,50(9):2239-2249. [14] 陈建文,张志伟,王长周,等.液体黏度和表面张力对雾化颗粒粒径的影响[J].东北大学学报:自然科学版,2010,31(7):1023-1025. CHEN Jianwen,ZHANG Zhiwei,WANG Changzhou,et al.Effects of fluid viscosity and surface tension on the size of atomized droplets[J].Journal of Northeastern University:Natural Science,2010,31(7):1023-1025.(in Chinese) [15] Pandey R K,Rehman A,Sarviya R M.Impact of alternative fuel properties on fuel spray behavior and atomization[J].Renewable and Sustainable Energy Reviews,2012,16(3):1762-1778. [16] Saldana D A,Starck L,Mougin P,et al.Prediction of density and viscosity of biofuel compounds using machine learning methods[J].Energy & Fuels,2012,26(4):2416-2426. [17] 王宝仁,孙乃有.石油产品分析[M].北京:化学工业出版社,2004:12-18. [18] Kay W B.Density of hydrocarbon gases and vapors at high temperature and pressure[J].Industrical & Engineering Chemistry,1936,28(9):1014-1019. [19] Benmekki H,Mansoori G A.Pseudoization technique and heavy fraction characterization with equation of state models[J].Advances in Thermodynamics,1989,1:57-77. [20] Tat M E,Van Gerpen J H.The specific gravity of biodiesel and its blends with diesel fuel[J].Journal of the American Oil Chemists' Society,2000,77(2):115-119. [21] Krisnangkura K,Yimsuwan T.An empirical approach in predicting biodiesel viscosity at various temperatures[J].Fuel,2006,85(1):107-113. [22] 许世海,熊云,刘晓.液体燃料的性质及应用[M].北京:中国石化出版社,2010:22-23. [23] Winterfeld P H,Scriven L E,Davis H T.An approximate theory of interfacial tensions of multicomponent systems:applications to binary liquid-vapor tensions[J].AIChE Journal,1978,24(6):1010-1014. [24] Jouyban A,Acree W E Jr.Comments on "solubility of ethyl maltol in aqueous ethanol mixtures"(Liu,B.-S.; Liu,R.-J.; Hu,Y.-Q.; Hu,Q.-FJ Chem.Eng.Data 2008,53,2712-2714)[J].Journal of Chemical & Engineering Data,2009,54(3):1168-1170. [25] Lefebvre A H.Atomization and sprays[M].New York:Hemisphere Publishing Corporation,1989. [26] Lefebvre A H.Gas turbine combustion[M].Boca Raton,Florida:CRC Press,1998.
点击查看大图
计量
- 文章访问数: 892
- HTML浏览量: 9
- PDF量: 582
- 被引次数: 0