留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式粗糙度对马赫数为4.5的平板边界层稳定性的影响

张存波 罗纪生 高军

张存波, 罗纪生, 高军. 分布式粗糙度对马赫数为4.5的平板边界层稳定性的影响[J]. 航空动力学报, 2016, 31(5): 1234-1241. doi: 10.13224/j.cnki.jasp.2016.05.027
引用本文: 张存波, 罗纪生, 高军. 分布式粗糙度对马赫数为4.5的平板边界层稳定性的影响[J]. 航空动力学报, 2016, 31(5): 1234-1241. doi: 10.13224/j.cnki.jasp.2016.05.027
ZHANG Cun-bo, LUO Ji-sheng, GAO Jun. Effects of distributed roughness on Mach 4.5 boundary-layer transition[J]. Journal of Aerospace Power, 2016, 31(5): 1234-1241. doi: 10.13224/j.cnki.jasp.2016.05.027
Citation: ZHANG Cun-bo, LUO Ji-sheng, GAO Jun. Effects of distributed roughness on Mach 4.5 boundary-layer transition[J]. Journal of Aerospace Power, 2016, 31(5): 1234-1241. doi: 10.13224/j.cnki.jasp.2016.05.027

分布式粗糙度对马赫数为4.5的平板边界层稳定性的影响

doi: 10.13224/j.cnki.jasp.2016.05.027
基金项目: 

高等学校博士学科点专项科研基金(20120032120007)

国家自然科学基金青年基金(11202147)

国家自然科学基金(11332007)

详细信息
    作者简介:

    张存波(1989-),男,山东利津人,博士生,主要从事流动稳定性方面的研究.

  • 中图分类号: V211.3;O357.4+1

Effects of distributed roughness on Mach 4.5 boundary-layer transition

  • 摘要: 采用数值模拟求解Navier-Stokes(N-S)方程的方法研究了小幅值分布式粗糙度对马赫数为4.5的平板边界层中扰动演化的影响.用泰勒展开线性化的办法将边界条件取在光滑平板壁面上,来模拟小幅值分布式粗糙度.研究了粗糙度及扰动的不同因素对边界层扰动演化的影响,其中包括粗糙度高度、波长、粗糙度区域的长度及扰动波频率等.研究结果表明:分布式粗糙度通过改变边界层基本流场影响扰动波的幅值演化,一定幅值的分布式粗糙度会使粗糙度区域前的不稳定区向低频移动,使粗糙度区域后的不稳定区向高频移动.从总体效果上看,对于通过粗糙度时,靠近中性曲线下支界相对低频的扰动,粗糙度会抑制其幅值的增长;对于靠近中性曲线上支界相对高频的扰动,粗糙度会促进其幅值的增长.

     

  • [1] Reshotko E.Disturbances in a laminar boundary layer due to distributed surface roughness[C]//Proceedings of Interational Symposiu,Turbulence and Chaotic Phenomena in fluids.Kyoto,Japan:[s.n.],1984:39-46.
    [2] Schneider S P.Effects of roughness on hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets,2008,45(2):193-209.
    [3] Fage A.The smallest size of a spanwise surface corrugation which affects boundary-layer transition on an aerofoil[R].London:Aeronautical Research Council Technical Report,R&M 2120,1943.
    [4] Klebanoff P S,Tidstrom K D.Mechanism by which a two-dimensional roughness element induces boundary-layer transition[J].Physics of Fluids,1972,15(7):1173-1188.
    [5] Nayfeh A H,Ragab S A,Al-Maaitah A A.Effect of bulges on the stability of boundary layers[J].Physics of Fluids,1988,31(4):796-806.
    [6] Morkovin M V.On roughness:induced transition:facts,views,and speculations[M].New York:Springer,1990:281-295.
    [7] Marxen O,Iaccarino G,Shaqfeh E S G.Disturbance evolution in a Mach 4.8 boundary layer with two-dimensional roughness-induced separation and shock[J].Journal of Fluid Mechanics,2010,648(10):435-469.
    [8] Fong K D,Wang X,Zhong X.Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[J].Computers & Fluids,2014,96(96):350-367.
    [9] 李慧,黄章峰.局部凸起对可压缩平板边界层稳定性的影响[J].航空动力学报,2015,30(1):173-181. LI Hui,HUANG Zhangfeng.Effect of local hump on stability of compressible boundary layer on flat plate[J]. Journal of Aerospace Power,2015,30(1):173-181.(in Chinese)
    [10] 刘开平,罗纪生.凹型粗糙元对边界层稳定性的影响[J].航空动力学报,2016,31(1):168-178. LIU Kaiping,LUO Jisheng.Effect of concave groove on the stability of boundary layer[J].Journal of Aerospace Power,2016,31(1):168-178.(in Chinese)
    [11] 吴宁宁,罗纪生.壁面小折角对马赫数4.5边界层中扰动演化的影响[J].空气动力学学报,2014,32(2):219-227. WU Ningning,LUO Jisheng.Evolution of disturbances in boundary layer for Mach number 4.5 over a small angle of wall corner[J].Acta Aerodynamica Sinica,2014,32(2):219-227.(in Chinese)
    [12] Gaster M.The influence of roughness on boundary layer stability[C]//IUTAM Symposium on One Hundred Years of Boundary Layer Research.New York:Springer Netherlands,2006:125-134.
    [13] Brehm C,Dackermann T,Grygier F,et al.Numerical investigations of the influence of distributed roughness on Blasius boundary layer stability[R].AIAA 2011-563,2011.
    [14] Fujii K.Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets,2006,43(4):731-738.
    [15] Bountin D,Chimitov T,Maslov A,et al.Stabilization of a hypersonic boundary layer using a wavy surface[J].AIAA Journal,2013,51(5):1203-1210.
    [16] 苏彩虹,周恒.嵌边法出流条件在可压缩流直接数值模拟中的应用[J].空气动力学学报,2006,24(3):289-294. SU Caihong,ZHOU Heng.The application of fringe method as the outflow boundary condition for the direct numerical simulation of compressible flows[J].Acta Aerodynamica Sinica,2006,24(3):289-294.(in Chinese)
    [17] 阎超.计算流体力学方法及应用[M].北京航空航天大学出版社,2006.
    [18] 周恒,赵耕夫.流动稳定性[M].北京:国防工业出版社,2004.
  • 加载中
计量
  • 文章访问数:  800
  • HTML浏览量:  2
  • PDF量:  553
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-30
  • 刊出日期:  2016-05-28

目录

    /

    返回文章
    返回