留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平箔片楔形高度对气体止推箔片轴承特性影响

徐方程 张广辉 孙毅 刘占生 张雯

徐方程, 张广辉, 孙毅, 刘占生, 张雯. 平箔片楔形高度对气体止推箔片轴承特性影响[J]. 航空动力学报, 2016, 31(12): 3064-3072. doi: 10.13224/j.cnki.jasp.2016.12.031
引用本文: 徐方程, 张广辉, 孙毅, 刘占生, 张雯. 平箔片楔形高度对气体止推箔片轴承特性影响[J]. 航空动力学报, 2016, 31(12): 3064-3072. doi: 10.13224/j.cnki.jasp.2016.12.031
XU Fang-cheng, ZHANG Guang-hui, SUN Yi, LIU Zhan-sheng, ZHANG Wen. Performance analysis of air foil thrust bearings withdifferent top foil taper heights[J]. Journal of Aerospace Power, 2016, 31(12): 3064-3072. doi: 10.13224/j.cnki.jasp.2016.12.031
Citation: XU Fang-cheng, ZHANG Guang-hui, SUN Yi, LIU Zhan-sheng, ZHANG Wen. Performance analysis of air foil thrust bearings withdifferent top foil taper heights[J]. Journal of Aerospace Power, 2016, 31(12): 3064-3072. doi: 10.13224/j.cnki.jasp.2016.12.031

平箔片楔形高度对气体止推箔片轴承特性影响

doi: 10.13224/j.cnki.jasp.2016.12.031
基金项目: 

国家自然科学基金(11572098)

详细信息
    作者简介:

    徐方程(1985-),男,浙江金华人,副教授,博士后,主要研究方向为气体箔片轴承、挤压油膜阻尼器及转子动力学等.

  • 中图分类号: V229+.2;TH133.37

Performance analysis of air foil thrust bearings withdifferent top foil taper heights

  • 摘要: 针对波箔型气体止推箔片轴承,建立了箔片结构二维薄板模型,并通过有限差分法和有限元法耦合求解可压缩气体Reynolds方程和气膜厚度方程,获得了给定轴承载荷条件下轴承气膜压力分布、气膜厚度分布、平箔片变形量和功率损耗等轴承特性.通过对比楔形高度分别为25,70,100,200,300μm时的轴承特性仿真结果研究了楔形高度对轴承性能的影响.结果表明:降低楔形高度使轴承气膜压力分布更均匀,并降低了平箔片的局部集中载荷.但楔形高度存在一个最佳值,使得达到相同轴承载荷所需的最小气膜厚度最大,并且轴承具有最小功率损耗,提高了轴承的工作效率.该结果为气体止推箔片轴承的结构设计提供的理论参考.

     

  • [1] Agrawal G L.Foil air or gas bearing technology:an overview[R].ASME Paper GT1997-347,1997.
    [2] Feng K,Kaneko S.Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model[J].Journal of Tribology,2010,132(2):021706.1-021706.11.
    [3] Kim D J,Andron C,Chang S S,et al.Mesoscale foil gas bearings for palm-sized turbomachinery:design,manufacturing,and modeling[J].Journal of Engineering for Gas Turbine and Power,2009,131(4):042502.1-042502.10.
    [4] Blok H,Rossum J J.The foil bearinga new departure in hydrodynamic lubrication[J].Lubrication Engineering,1953,9(6):316-320.
    [5] Heshmat H,Walowit J A,Pinkus O.Analysis of gas-lubricated foil journal bearings[J].Journal of Lubrication Technology,1983,105(4):647-655.
    [6] Peng Z C,Khonsari M M.Hydrodynamic analysis of compliant foil bearings with compressible air flow[J].Transactions of the ASME,2004,126(3):542-546.
    [7] Peng Z C,Khonsari M M.On the limiting load-carrying capacity of foil bearings[J].Journal of Tribology,2004,126(4):817-818.
    [8] Peng Z C,Khonsari M M.A thermohydrodynamic analysis of foil journal bearings[J].Journal of Tribology,2006,128(3):534-541.
    [9] Roger K C P,Heshmat H.Compliant foil bearing structural stiffness analysis:Part Ⅰ theoretical model including strip and variable bump foil[J].Journal of Tribology,1992,114(2):394-400.
    [10] Ruscitto D,McCormick J,Gray S.Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine Ⅰ:journal bearing performance[R].NASA CR-135368,1978.
    [11] Andrés L S,Kim T H.Improvements to the analysis of gas foil bearings integration of top foil 1D and 2D structural models[R].ASME Paper GT2007-27249,2007.
    [12] Heshmat H,Walowit J A,Pinkus O.Analysis of gas-lubricated complaint thrust bearings[J].Journal of Lubrication Technology,1983,105(4):105:638-646.
    [13] Roger C P.Dynamic structural properties of compliant foil thrust bearings-comparison between experimental and theoretical results[J].Journal of Tribology,1994,116(1):70-75.
    [14] Iordanoff I.Analysis of an aerodynamic compliant foil thrust bearing:method for a rapid design[J].Journal of Tribology,1999,121(4):816-822.
    [15] Heshmat C A,Xu D S,Heshmat H.Analysis of gas lubricated foil thrust bearings using coupled finite element and finite difference methods[J].Journal of Tribology,1999,122(1):199-204.
    [16] Park D J,Kim C H,Jang G H,et al.Theoretical consideration of static and dynamic characteristics of air foil thrust bearing with tilt and slip flow[J].Tribology International,2008,41(4):282-295.
    [17] Lee D,Kim D J.Design and performance prediction of hybrid air foil thrust bearings[J].Journal of Engineering for Gas Turbine and Power,2010,133(4):042501.1-042501.13.
    [18] Gad A,Asme A,Kaneko S.A new structural stiffness model for bump-type foil bearings:application to generation Ⅱ gas lubricated foil thrust bearing[J].Journal of Tribology,2014,136(4):041701.1-041701.13.
    [19] 戚社苗,耿海鹏,郭海刚,等.弹性箔片动压气体推力轴承承载性能研究[J].润滑与密封,2006,31(5):1-4. QI Shemiao,GENG Haipeng,GUO Haigang,et al.Theoretical research on the load performance of aerodynamic compliant foil thrust bearings[J].Lubrication Engineering,2006,31(5):1-4.(in Chinese)
    [20] 周权,赵祥雄,陈汝刚,等.基于有限差分法的动压气体止推轴承静态特性分析[J].润滑与密封,2009,34(8):6-9. ZHOU Quan,ZHAO Xiangxiong,CHEN Rugang,et al.Static characteristic analysis of aerodynamic gas thrust bearing based on finite difference method[J].Lubrication Engineering,2009,34(8):6-9.(in Chinese)
    [21] Ventsel E,Krauthammer T.Thin plates and shells:theory,analysis,and applications[J].Applied Mechanics Reviews,2002,55(4):1813-1831.
  • 加载中
计量
  • 文章访问数:  757
  • HTML浏览量:  0
  • PDF量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-28
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回