留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转状态下涡轮叶片复合冷却结构

朱兴丹 张靖周 谭晓茗

朱兴丹, 张靖周, 谭晓茗. 旋转状态下涡轮叶片复合冷却结构[J]. 航空动力学报, 2017, 32(3): 584-591. doi: 10.13224/j.cnki.jasp.2017.03.009
引用本文: 朱兴丹, 张靖周, 谭晓茗. 旋转状态下涡轮叶片复合冷却结构[J]. 航空动力学报, 2017, 32(3): 584-591. doi: 10.13224/j.cnki.jasp.2017.03.009
Composite cooling structure on rotating turbine blade[J]. Journal of Aerospace Power, 2017, 32(3): 584-591. doi: 10.13224/j.cnki.jasp.2017.03.009
Citation: Composite cooling structure on rotating turbine blade[J]. Journal of Aerospace Power, 2017, 32(3): 584-591. doi: 10.13224/j.cnki.jasp.2017.03.009

旋转状态下涡轮叶片复合冷却结构

doi: 10.13224/j.cnki.jasp.2017.03.009
基金项目: 中央高校基本科研业务费专项资金;江苏省研究生培养创新工程(KYLX_0307); 航空科学基金(2015ZB52019)

Composite cooling structure on rotating turbine blade

  • 摘要: 采用三维流固耦合换热计算研究了旋转状态下涡轮叶片冷却结构的复合冷却性能,讨论了辐射换热和转速对综合冷却效果的影响.结果表明:结构1叶根处出现局部高温区,低冷却效率范围大,叶片整体温度分布不均匀,结构2通过更合理的气膜流量分配提高了前缘附近冷却效率,降低了叶片表面最高温度,结构3采用内部蛇形通道使吸力面冷却效率显著提高,叶片整体冷却效率分布较为均匀;考虑壁面辐射换热时叶片表面温度升高,当表面发射率为1时局部温升超过50K,壁面辐射换热的影响不能被忽略;压力面综合冷却效率随转速增大而升高,3种结构的局部冷却效率最高分别能提升15.6%,13.4%和16.4%,吸力面上除弦中区冷却效率随转速升高有所降低外,其余位置冷却效率变化不大.

     

  • [1] Han J C,Wright L M.Enhanced internal cooling of turbine blades and vanes[R].Morgantown:National Energy Technology Laboratory,2007.
    [2] Bogard D G,Thole K A.Gas turbine film cooling[J].Journal of Propulsion and Power,2006,22(2):249-270.
    [3] Bunker R S.A review of shaped hole turbine film cooling technology[J].Journal of Heat Transfer,2005,127(4):441-453.
    [4] Dyson T E,Bogard D G,Piggush J D,et al.Overall effectiveness for a film cooled turbine blade leading edge with varying hole pitch[J].Journal of Turbomachinery,2013,135(3):031011.1-031011.8.
    [5] Deng H W,Gu Z P,Zhu J Q,et al.Experiments of impingement heat transfer with film extraction flow on the leading edge of rotating blades[J].International Journal of Heat and Mass Transfer,2012,55(21/22):5425-5435.
    [6] Andrei L,Carcasci C,Soghe R D,et al.Heat transfer measurements in a leading edge geometry with racetrack holes and film cooling extraction[J].Journal of Turbomachinery,2013,135(3):031020.1-031020.9.
    [7] Horbach T,Schulz A,Bauer H J.Trailing edge film cooling of gas turbine airfoils:external cooling performance of various internal pin fin configurations[J].Journal of Turbomachinery,2011,133(4):041006.1-041006.9.
    [8] Martini P,Schulz A,Bauer H J.Film cooling effectiveness and heat transfer on the trailing edge cutback of gas turbine airfoils with various internal cooling designs[J].Journal of Turbomachinery,2006,128(1):196-205.
    [9] Barigozzi G,Perdichizzi A,Ravelli S.Pressure side and cutback trailing edge film cooling in a linear nozzle vane cascade at different Mach numbers[J].Journal of Turbomachinery,2012,134(5):051037.1-051037.10.
    [10] 徐虹艳,张靖周,谭晓茗.涡轮叶片尾缘内冷通道旋流冷却特性[J].航空动力学报,2014,29(1):59-66.XU Hongyan,ZHANG Jingzhou,TAN Xiaoming.Vortex cooling performance in internal cooling channel of turbine blade trailing edge[J].Journal of Aerospace Power,2014,29(1):59-66.(in Chinese)
    [11] 郭涛,朱惠人,许都纯.带90°肋和双排出流孔通道换热特性的实验[J].航空动力学报,2010,25(10):2249-2254.GUO Tao,ZHU Huiren,XU Duchun.Heat transfer investigation of the channels with 90°rib turbulators and double-row bleed holes[J].Journal of Aerospace Power,2010,25(10):2249-2254.(in Chinese)
    [12] 李春林,朱惠人,白江涛,等.带肋横流通道中气膜孔位置对气膜冷却特性的影响[J].航空动力学报,2012,27(6):1340-1346.LI Chunlin,ZHU Huiren,BAI Jiangtao,et al.Effect of film cooling hole entrance position on film cooling characters in the cross-flow passage with ribs[J].Journal of Aerospace Power,2012,27(6):1340-1346.(in Chinese)
    [13] Cukurel B,Selcan C,Arts T.Film cooling extraction effects on the aero-thermal characteristics of rib roughened cooling channel flow[J].Journal of Turbomachinery,2013,135(2):021016.1-021016.12.
    [14] Nakamata C,Mimura F,Mastushita M,et al.Local cooling effectiveness distribution of an integrated impingement and pin fin cooling configuration[R].ASME Paper GT2007-27020,2007.
    [15] Funazaki K,BinSalleh H.Extensive studies on internal and external heat transfer characteristics of integrated impingement cooling structure for HP turbines[R].ASME Paper GT2008-50202,2008.
    [16] 李鑫,毛军逵,王小平,等.双层壳型涡轮叶片中冲击旋流换热增益效果试验[J].推进技术,2010,31(3):325-330.LI Xin,MAO Junkui,WANG Xiaoping,et al.Experiments on heat transfer enhancement with vortex in a double-decker jet/film cooling structure[J].Journal of Propulsion Technology,2010,31(3):325-330.(in Chinese)
    [17] Bunker R S.Gas turbine heat transfer:ten remaining hot gas path challenges[J].Journal of Turbomachinery,2007,129(2):193-201.
    [18] 董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D].哈尔滨:哈尔滨工业大学,2009.DONG Ping.Research on conjugate heat transfer simulation of aero turbine engine air-cooled vane[D].Harbin:Harbin Institute of Technology,2009.(in Chinese)
    [19] Mangani L,Cerutti M,Maritano M,et al.Conjugate heat transfer analysis of NASA C3X film cooled vane with an object-oriented CFD code[R].ASME Paper GT2010-23458,2010.
    [20] Ni R H,Humber W,Fan G,et al.Conjugate heat transfer analysis of a film-cooled turbine vane[R].ASME Paper GT2011-45920,2011.
    [21] 王利平.涡轮叶片冷却结构传热性能的数值研究[D].南京:南京航空航天大学,2011.WANG Liping.Numerical investigation on heat transfer of blade with cooling structure[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.(in Chinese)
    [22] 朱兴丹,谭晓茗,郭文,等.高压涡轮转子叶片内部气流组织方式研究[J].航空学报,2014,35(12):3273-3282.ZHU Xingdan,TAN Xiaoming,GUO Wen,et al.Investigation of airflow allocation inside high pressure turbine rotor blade[J].Acta Aeronautica et Astronautica Sinica,2014,35(12):3273-3282.(in Chinese)
    [23] Turner E R,Wilson M D,Hylton L D,and et al.Analytical and experimental evaluation of surface heat transfer distributions with leading edge showerhead film cooling[R].NASA-CR-174827,1985.
  • 加载中
计量
  • 文章访问数:  936
  • HTML浏览量:  3
  • PDF量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 刊出日期:  2017-03-28

目录

    /

    返回文章
    返回