留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高雷诺数二维充气机翼构形的气动特性

张俊韬 侯中喜 郭正

张俊韬, 侯中喜, 郭正. 高雷诺数二维充气机翼构形的气动特性[J]. 航空动力学报, 2017, 32(3): 657-665. doi: 10.13224/j.cnki.jasp.2017.03.018
引用本文: 张俊韬, 侯中喜, 郭正. 高雷诺数二维充气机翼构形的气动特性[J]. 航空动力学报, 2017, 32(3): 657-665. doi: 10.13224/j.cnki.jasp.2017.03.018
Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number[J]. Journal of Aerospace Power, 2017, 32(3): 657-665. doi: 10.13224/j.cnki.jasp.2017.03.018
Citation: Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number[J]. Journal of Aerospace Power, 2017, 32(3): 657-665. doi: 10.13224/j.cnki.jasp.2017.03.018

高雷诺数二维充气机翼构形的气动特性

doi: 10.13224/j.cnki.jasp.2017.03.018
基金项目: 航空科学基金(20145788006)

Aerodynamic performance of configurations of two-dimension inflatable wings under high Reynolds number

  • 摘要: 针对基于二维充气机翼的构形特征进行高雷诺数条件下的气动特性分析.首先通过对二维充气机翼构形特征的设计,建立了描述逼近程度的误差参数和若干模型;进一步运用数值方法,通过与标准翼型的对比,分析充气机翼的气动性能及其误差参数的敏感性.数值结果表明:在高雷诺数条件下,充气机翼的气动性能相对于标准翼型有所降低.同时,结合对流场特征的分析,从机理上解释二维充气机翼与标准翼型气动性能差异形成的原因,即导致总的阻力系数明显增加的主要原因是其凹凸起伏的表面对充气机翼表面压力分布所引起的变化,局部压力升高从而大幅增加了压差阻力.

     

  • [1] Cadogan D,Scarborough S,Gleeson D,et al.Recent development and test of inflatable wing[R].AIAA-2006-2139,2006.
    [2] Simpson A,Jacob J,Smith S,et al.BIG BLUE Ⅱ: Mars aircraft prototype with inflatable-rigidizable wings[R].AIAA-2005-813,2005.
    [3] Reasor D A,LeBeau R P,Smith S W,et al.Flight testing and simulation of a Mars aircraft design using inflatable wings[R].AIAA-2007-0243,2007.
    [4] Reasor D A,LeBeau R P.Numerical study of bumpy airfoil control for low Reynolds numbers[R].AIAA-2007-4100,2007.
    [5] Smith S W,LeBeau R P,Seigler T M,et al.Testing of compact inflatable wings for small autonomous aircraft[R].AIAA-2008-2216,2008.
    [6] LeBeau R P,Gilliam T D,Schloemer A,et al.Numerical comparison of flow over bumpy inflatable airfoils[R].AIAA-2009-1306,2009.
    [7] Thamann M.Aerodynamics and control of a deployable wing UAV for autonomous flight.[D].Lexington,US: University of Kentucky,2012.
    [8] Hauser T,Johansen T A,LeBeau R P.Computational optimization of a low Reynolds number inflatable airfoil[R].AIAA-2011-3534,2011.
    [9] Takahashi D,LeBeau R P.Computational investigation of Reynolds number effects on flow over inflatable airfoils[R].AIAA-2011-337,2011.
    [10] Ghobadi K J,LeBeau R P,Hauser T.Computational testing of inflatable airfoils for improved design[R].AIAA-2012-1213,2012.
    [11] Ghobadi K J,Pifer E,LeBeau R P,et al.A computational and experimental investigation of flow over an inflatable wing[R].AIAA-2012-2899,2012.
    [12] Zhang F,Ghobadi K J,Spencer G,et al.Examination of three-dimensional flow over a chambered inflatable wing[R].AIAA-2014-0556,2014.
    [13] Allred R E,Hoyt A E,Harrah L A,et al.Light curing rigidizable inflatable wing[R].AIAA-2004-1809,2004.
    [14] 王长国,刘远鹏 崔宇佳,等.逆向迭代的点阵式充气机翼三维保形分析[J].哈尔滨工业大学学报,2013,45(9):31-34.WANG Changguo,LIU Yuanpeng,CUI Yujia,et al.Inverse iterative three-dimensional initial shape analysis of inflatable wing.[J].Journal of Harbin Institute of Technology,2013,45(9):31-34.(in Chinese)
    [15] 吕强,叶正寅,李栋.充气结构机翼的设计和试验研究[J].飞行力学,2007,25(4):77-81.L Qiang,YE Zhengyin,LI Dong.Research on design and test of inflatable wing[J].Flight Dynamics,2007,25(4):77-81.(in Chinese)
    [16] 王伟,王华,贾清萍.充气机翼承载能力和气动特性分析[J].航空动力学报,2010,25(10):2296-2301.WANG Wei,WANG Hua,JIA Qingping.Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J].Journal of Aerospace Power,2010,25(10):2296-2301.(in Chinese)
    [17] Simpson A,Santhanakrishnan A,Jacob J,et al.Flying on air:UAV flight testing with inflatable wing technology[R].AIAA-2004-6570,2004.
    [18] Marzocca P,Gürdal Z,Hol J,et al.Design and shape optimization of inflatable wings[R].AIAA-2006-1823,2006.
    [19] Eleni D C,Athanasios T I,Dionissios M P.Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil[J].Journal of Mechanical Engineering Research,2012,4(3):100-111.
    [20] Noll T E,Brown J M,Perez-Davis M E,et al.Investigation of the Helios prototype aircraft mishap[R].Hampton,US:NASA Report,2004.
    [21] Johansen J.Prediction of laminar/turbulent transition in airfoil flows[R].Copenhagen,Denmark: Ris National Laboratory Report,Ris-R-987(EN),1997.
  • 加载中
计量
  • 文章访问数:  776
  • HTML浏览量:  4
  • PDF量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-23
  • 刊出日期:  2017-03-28

目录

    /

    返回文章
    返回