留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性陶瓷基复合材料涡轮叶片概率性热分析方法

屠泽灿 毛军逵 徐瑞 娄德仓 郭文 黄维娜

屠泽灿, 毛军逵, 徐瑞, 娄德仓, 郭文, 黄维娜. 各向异性陶瓷基复合材料涡轮叶片概率性热分析方法[J]. 航空动力学报, 2017, 32(10): 2427-2437. doi: 10.13224/j.cnki.jasp.2017.10.016
引用本文: 屠泽灿, 毛军逵, 徐瑞, 娄德仓, 郭文, 黄维娜. 各向异性陶瓷基复合材料涡轮叶片概率性热分析方法[J]. 航空动力学报, 2017, 32(10): 2427-2437. doi: 10.13224/j.cnki.jasp.2017.10.016
Probabilistic thermal analysis of ceramic matrix composite turbine vane with anisotropic thermal conductivity[J]. Journal of Aerospace Power, 2017, 32(10): 2427-2437. doi: 10.13224/j.cnki.jasp.2017.10.016
Citation: Probabilistic thermal analysis of ceramic matrix composite turbine vane with anisotropic thermal conductivity[J]. Journal of Aerospace Power, 2017, 32(10): 2427-2437. doi: 10.13224/j.cnki.jasp.2017.10.016

各向异性陶瓷基复合材料涡轮叶片概率性热分析方法

doi: 10.13224/j.cnki.jasp.2017.10.016
基金项目: 国家重点基础研究发展计划

Probabilistic thermal analysis of ceramic matrix composite turbine vane with anisotropic thermal conductivity

  • 摘要: 考虑陶瓷基复合材料等纤维增韧复合材料导热系数的各向异性及分散性,建立了基于概率统计的陶瓷基复合材料涡轮叶片热分析方法。研究中以MarkⅡ涡轮叶片冷却结构为例,综合利用有限元方法和蒙特卡洛方法,分析了应用陶瓷基复合材料后的温度场均值和波动特性。计算中将导热系数作为随机输入参数,分析了导热系数各向异性及其分散度对叶片前缘滞止点温度、尾缘温度以及高温区域(T>900K)面积的影响。计算中发现在本文的计算工况下,考虑导热系数存在正态波动情况时,叶片前缘滞止点、尾缘温度波动也满足正态分布。前缘滞止点温度在导热系数变异系数为01,导热系数比为2时其温度波动最大,相比12731K的均温,有16%的概率超温913K。尾缘温度在导热系数变异系数为01,导热系数比为10时波动最大,有16%的概率超过均值11529K达527K。计算结果表明:导热系数分散度所带来的波动,会导致叶片内部高温关注区域(T>900K)的面积增大,并且高温关注区域相对增加量ΔShot随导热系数变异系数α的增加而增加。计算结果表明,高温关注区域相对增加量最大发生在导热系数比为2,变异系数为0.1时,此时ΔShot=4.8%。

     

  • [1] 方昌德.航空发动机的发展研究[M].北京:航空工业出版社,2009.
    [2] National Physical Laboratory (Great Britain).The properties of fibre composites:proceedings of a conference held at the National Physical Laboratory,4 November,1971[M].London:IPC Science and Technology Press,1972.
    [3] MUTNURI B.Thermal conductivity characterization of composite materials[D].Morgantown:West Virginia University,2006.
    [4] TIAN T,KEVIN D C.Anisotropic thermal conductivity measurement of carbonfiber/epoxy composite materials[J].International Journal of Heat and Mass Transfer,2012,55(23/24):6530-6537.
    [5] XU Y B,YAGI K.Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement[J].Computational Materials Science,2004,30(3/4):242-250.
    [6] 刘梦西.含孔隙的陶瓷基复合材料力学性能和分散性研究[D].南京:南京航空航天大学,2014. LIU Mengxi.Research on mechanical performance and the dispersion of ceramic composites with porosity[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.(in Chinese)
    [7] 冀英杰.填充型橡胶复合材料导热性能实验研究及数值模拟[D].山东 青岛:青岛科技大学,2013. JI Yingjie.Experimental study and numerical simulation of the thermal conductivity of filled rubber composite[D].Qingdao Shandong:Qingdao University of Science and Technology,2013.(in Chinese)
    [8] 宋迎东,孙志刚,高希光,等.纤维增强复合材料有效性能分散性[J].航空动力学报,2005,20(2):230-235. SONG Yingdong,SUN Zhigang,GAO Xiguang,et al.Research on discrepancy of fiber reinforced composite effective performance[J].Journal of Aerospace Power,2005,20(2):230-235.(in Chinese)
    [9] HAN J,DUTTA S,EKKAD S V.Gas turbine heat transfer and cooling technology[M].New York:Taylor and Francis,2000.
    [10] DAVID C,ETHAN S.Probabilistic analysis of a turbofan secondary flow system[R].ASME Paper GT2004-53197,2004.
    [11] 费成巍,白广忱,赵合阳,等.高压涡轮叶尖径向运行间隙概率设计[J].北京航空航天大学学报,2013,39(3):305-309. FEI Chengwei,BAI Guangchen,ZHAO Heyang,et al.Probabilistic design for bladetip radial running clearance of HPT[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(3):305-309.(in Chinese)
    [12] 唐海龙,张坤,郭昆,等.部件性能非确定性对涡轴发动机性能影响量化方法研究[J].推进技术,2015,36(8):1143-1150. TANG Hailong,ZHANG Kun,GUO Kun,et al.Quantification method of effect of uncertainty on component performance for turboshaft engine performance[J].Journal of Propulsion Technology,2015,36(8):1143-1150.(in Chinese)
    [13] DAMMARO A,MONTOMOLI F.Uncertainty quantification and film cooling[J].Computers and Fluids,2011,71(71):320-326.
    [14] ETHAN S,DAVE C.Probabilistic thermal analysis of gas turbine internal hardware[R].ASME Paper GT2006-90881,2006.
    [15] MONTOMOLI F,DAMMARO A,UCHIDA S.Uncertainty quantification and conjugate heat transfer:a stochastic analysis[J].Journal of Turbomachinery,2013,135(3):320-326.
    [16] 宋英杰,聂俊,郭振东,等.高温叶片换热性能不确定性量化[J].工程热物理学报,2015,36(8):1666-1671. SONG Yingjie,NIE Jun,GUO Zhendong,et al.Uncertainty quantification of heat transfer performance of high temperature blade[J].Journal of Engineering Thermophysics,2015,36(8):1666-1671.(in Chinese)
    [17] BUNKER R S.The effects of manufacturing tolerances on gas turbine cooling[J].Journal of Turbomachinery,2009,131(4):041018.1-041018.11.
    [18] THOMAS W,MATTHIAS V,HARTMUT S,et al.Probabilistic finiteelement analysis on turbine blades[R].ASME Paper GT2009-59877,2009.
    [19] PAPPU L,MURTHY N,Nemeth N N,et al.Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[R].NASA/TM2004-213331,2004.
    [20] 蒋向华,杨晓光,王延荣.一种结构可靠性的数值计算方法[J].航空动力学报,2005,20(5):778-782. JIANG Xianghua,YANG Xiaoguang,WANG Yanrong.Numerical approach for structure reliability evaluation[J].Journal of Aerospace Power,2005,20(5):778-782.(in Chinese)
    [21] 高阳,白广忱,张瑛莉.涡轮盘低循环疲劳寿命的概率分析[J].航空动力学报,2009,24(4):804-809. GAO Yang,BAI Guangchen,ZHANG Yingli.Probability analysis for the low cycle fatigue life of a turbine disk[J].Journal of Aerospace Power,2009,24(4):804-809.(in Chinese)
    [22] 陈亮.基于有限元方法的结构可靠性设计[D].南京:东南大学,2006. CHEN Liang.Structure reliability design based on finite element method[D].Nanjing:Southeast University,2006.(in Chinese)
    [23] HYLTON L D,MUKGEC M S,TYRBER E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R].NASA CR-168015,1983.
    [24] 董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D].哈尔滨:哈尔滨工业大学,2009. DONG Ping.Research on conjugate heat transfer simulation of aero turbine engine aircooled vane[D].Harbin:Harbin Institute of Technology,2009.(in Chinese)
    [25] 李伟.PIP工艺制备Cf /SiC复合材料孔隙结构及其传热传质特性研究[D].长沙:国防科技大学,2008. LI Wei.Porous characteristics and their influences on mass and heat transfer of Cf/SiC composites fabricated via the PIP process[D].Changsha:National University of Defense Technology,2008.(in Chinese)
  • 加载中
计量
  • 文章访问数:  733
  • HTML浏览量:  0
  • PDF量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回