留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用非均匀反弹特性壁面的粒子分离器研究

袁永青 谭慧俊 陈昊

袁永青, 谭慧俊, 陈昊. 采用非均匀反弹特性壁面的粒子分离器研究[J]. 航空动力学报, 2018, 33(1): 108-115. doi: 10.13224/j.cnki.jasp.2018.01.013
引用本文: 袁永青, 谭慧俊, 陈昊. 采用非均匀反弹特性壁面的粒子分离器研究[J]. 航空动力学报, 2018, 33(1): 108-115. doi: 10.13224/j.cnki.jasp.2018.01.013
Investigation of inertial particle separator withnonuniform surface materials[J]. Journal of Aerospace Power, 2018, 33(1): 108-115. doi: 10.13224/j.cnki.jasp.2018.01.013
Citation: Investigation of inertial particle separator withnonuniform surface materials[J]. Journal of Aerospace Power, 2018, 33(1): 108-115. doi: 10.13224/j.cnki.jasp.2018.01.013

采用非均匀反弹特性壁面的粒子分离器研究

doi: 10.13224/j.cnki.jasp.2018.01.013
基金项目: 教育部新世纪优秀人才支持计划(NCET-11-0831)

Investigation of inertial particle separator withnonuniform surface materials

  • 摘要: 为了在不改变流道几何型面的基础上实现对较大粒径砂尘轨迹的有效组织,借助数值仿真技术,对一类典型无旋式惯性粒子分离器流道内两相流场展开了模拟研究。通过对典型工况下粒子分离器内砂尘轨迹的追踪和细致分析,首先获得了壁面反弹主导下的较大粒径砂尘的三类基本运动模式及其主要特征。而后以此为基础,充分利用2024铝合金、7020橡胶以及45钢3种典型壁面在反弹特性上的差异,同时结合原流道型面,完成了一种基于非均匀壁面的粒子分离器方案设计。计算表明:通过对鼓包迎风面等关键区域的壁面材质的特殊设计,可在不降低气动性能的前提下实现AC砂及C砂分离效率的显著提升,其增幅分别为6.0%和13.7%。

     

  • [1] HAMED A,TABAKOFF W,WENGLARZ R.Erosion and deposition in turbo machinery[J].Journal of Propulsion and Power,2006,22(2):350-360.
    [2] 邓瑛,闫晓军,聂景旭.粒子分离器叶片涂层冲蚀磨损的数值模拟[J].航空动力学报,2007,22(12):2089-2093.DENG Ying,YAN Xiaojun,NIE Jingxu.Numerical simulation of erosion and abrasion of separator blade coating[J].Journal of Aerospace Power,2007,22(12):2089-2093.(in Chinese)
    [3] FILIPPONE A,BOJDO N.Turboshaft engine air particle separation[J].Progress in Aerospace Sciences,2010,46(5):224-245.
    [4] TABAKOFF W,HAMED A.Installed engine performance in dustladen atmosphere[R].AIAA 84-2488,1984.
    [5] DUFFY R J,SHATTUCK B F.Integral engine inlet particle separator:Volume Ⅰ technology program[R].USAAMRDLTR-75-31A,1975.
    [6] WILLIAM R S.Environmental icing test of T800 helicopter engine with integral inlet particle separator[R].AIAA 89-2324,1989.
    [7] JONES M J,MORGAN S G.Evaluation of the installed performance of the RTM322 in EH101[R].AIAA 94-2673,1994.
    [8] ZEDAN M,MUSTAFA A,HARTMAN P,SEHRA A.Viscous flow analysis of advanced particle separators[J].Journal of Propulsion and Power,1992,8(4):843-848.
    [9] SAEED F,ALGARNI A Z.An analysis method for inertial particle separator[R].ASME Paper 2006-GT-0014,2006.
    [10] HIGGINS T J.Adaptive inertial particle separator:EU 1908939[P].2008-04-09.
    [11] HARTMAN P A.High particle separation efficiency system:US6702873B2[P].2004-05-09.
    [12] THOMAS M E,DIONNE P J.Turbine inlet protection system concept design using CFD technology[R].AIAA 94-2813,1994.
    [13] 童悦.整体式惯性粒子分离器的流动机理及设计方法研究[D].南京:南京航空航天大学,2012.TONG Yue.Flow mechanism and design method of inlet particle separator for turboshaft engine[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.(in Chinese)
    [14] SOO S L.Fluid dynamics of multiphase systems[M].Boston,MA:Ginn and Company,1967.
    [15] WAKEMAN T,TABAKOFF W.Measured particle rebound characteristics useful for erosion prediction[R].ASME Paper 1982-GT-0095,1982.
    [16] TABAKOFF W.Measurements of particles rebound characteristics on materials used in gas turbines[J].Journal of Propulsion and Power,1991,7(5):805-813.
    [17] 吴铁鹰,赵梦熊.颗粒壁面碰撞建模与数据处理[J].振动工程学报,2014,27(4):589-597.WU Tieying,ZHAO Mengxiong.Data processing and modeling of particlewall collision[J].Journal of Vibration Engineering,2014,27(4):589-597.(in Chinese)
    [18] ROBERT J D,BERNARD F S.Integral engine inlet particle separator:VolumeⅡ design fuide[R].USAAMRDLTR-75-31B,1975.
  • 加载中
计量
  • 文章访问数:  630
  • HTML浏览量:  2
  • PDF量:  553
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-31
  • 刊出日期:  2018-01-28

目录

    /

    返回文章
    返回