留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热冲击后气膜冷却叶片结构强度流固热耦合仿真

关鹏 艾延廷 王志 包天南

关鹏, 艾延廷, 王志, 包天南. 热冲击后气膜冷却叶片结构强度流固热耦合仿真[J]. 航空动力学报, 2018, 33(8): 1811-1820. doi: 10.13224/j.cnki.jasp.2018.08.003
引用本文: 关鹏, 艾延廷, 王志, 包天南. 热冲击后气膜冷却叶片结构强度流固热耦合仿真[J]. 航空动力学报, 2018, 33(8): 1811-1820. doi: 10.13224/j.cnki.jasp.2018.08.003
Structural strength simulation of film cooling vane after heat shock by thermal/flow/structure coupling[J]. Journal of Aerospace Power, 2018, 33(8): 1811-1820. doi: 10.13224/j.cnki.jasp.2018.08.003
Citation: Structural strength simulation of film cooling vane after heat shock by thermal/flow/structure coupling[J]. Journal of Aerospace Power, 2018, 33(8): 1811-1820. doi: 10.13224/j.cnki.jasp.2018.08.003

热冲击后气膜冷却叶片结构强度流固热耦合仿真

doi: 10.13224/j.cnki.jasp.2018.08.003
基金项目: 国家自然科学基金(51406124)

Structural strength simulation of film cooling vane after heat shock by thermal/flow/structure coupling

  • 摘要: 研究了冷气流量对气孔周围热应力的影响,为气膜冷却叶片可靠性设计提供参考。改变气孔的孔径,并建立有限元模型,结合有限元/边界元理论,通过流固热三场耦合技术获得热冲击后的叶片最大温度、温度不均衡程度及最大热应力。研究表明:增加冷气量有利于改善叶片冷却效率降低叶片温度,但也会使叶片温度不均衡程度增加,加剧尾缘气孔内的热应力载荷;增加前缘气孔直径可提升66%的平均冷却效率,有利于减缓气孔内的热应力,增加尾缘气孔的直径对冷却效率及热应力的影响均较小。此外,数值计算结果与试验及解析解较为吻合,对于气膜冷却叶片结构设计具有参考价值。

     

  • [1] VENTZISLAV G K,DANNY W M,MINKING K C,et al.Slaughter three-dimensional modeling of creep damage in airfoils for advanced turbine systems[R].ASME Paper GT2008-51278,2008.
    [2] MONTOMOLI F,MASSINI M,YANG H,et al.The benefit of high-conductivity materials in film cooled turbine nozzles[J].International Journal of Heat and Fluid Flow,2012,34(4):107-116
    [3] 钱惠华,李海,程滔,等.涡轮导向叶片热疲劳分析[J].航空动力学报,2003,18(2):186-190.QIAN Huihua,LI Hai,CHENG Tao,et al.Thermal fatigue analysis to nozzle guide vanes[J].Journal of Aerospace Power,2003,18(2):186-190.(in Chinese)
    [4] LI G C,ZHU H R,Fan H M.Influences of hole shape on film cooling characteristics with CO2 injection[J].Chinese Journal of Aeronautics,2008,21(5):393-401.
    [5] 刘聪,朱惠人,付仲议,等.涡轮动叶压/吸面气膜孔冷却特性实验研究[J].航空动力学报,2016,37(3):512-519.LIU Cong,ZHU Huiren,FU Zhongyi,et al.Experimental study of film cooling characteristics on pressure and suction side in a turbine blade[J].Journal of Aerospace Power,2016,37(3):512-519.(in Chinese)
    [6] ALEJANDRO H R,ZDZISLAW M C,ALAIN D.The effect of start-up cycle in ceramic coating used as thermal barrier for a gas turbine bucket[J].Applied Thermal Engineering,2009,29(14/15):3056-3065.
    [7] KUO S H,JONG S.L,ELLIOTT T,et al.Conjugate heat transfer analysis for gas turbine film-cooled blade[R].ASME Paper GT2016-56688,2016.
    [8] ANDREI L,INNOCENTI L,ANDREINI A,et al.Film cooling modeling for gas turbine nozzles and blades:validation and application[R].ASME Paper GT2015-43345,2015.
    [9] NORBERT M,KARSTEN K,DIETER B,et al.Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration[J].Propulsion and Power Research,2013,2(1):1-9.
    [10] 彭志勇,吕文林.热冲击条件下高热叶片的热疲劳对比试验方案研究[J].航空动力学报,1997,12(1):33-36.PENG Zhiyong,L Wenlin.A comparative test approach for thermal fatigue life of high-heat blade under thermal shock[J].Journal of Aerospace Power,1997,12(1):33-36.(in Chinese)
    [11] 艾兴,高行山,温志勋,等.DD6镍基单晶合金气膜孔薄壁平板高温蠕变性能[J].航空动力学报,2014,29(5):1197-1204.AI Xing,GAO Hangshan,WEN Zhixun,et al.Creep behavior of thin-walled plate with cooling holes of nickel-based single crystal superalloy DD6 under high temperature[J].Journal of Aerospace Power,2014,29(5):1197-1204.(in Chinese)
    [12] YIN S,JIN D H,GUI X M,el al.Application and comparison of SST model in numerical simulation of the axial compressors[J].Journal of Thermal Science,2010,19(4):300-309.
    [13] 关鹏,艾延廷,王志,等.涡轮导向叶片热冲击数值模拟研究[J].推进技术,2016,37(10):1938-1945.GUAN Peng,AI Yanting,WANG Zhi,et al.Numerical simulation of nozzle guide vane subjected to thermal shock load[J].Journal of Propulsion Technology,2016,37(10):1938-1945.(in Chinese)
    [14] SHEN J,TANG Y F,XU J C,et al.Strength and fatigue analysis of tube-sheet subjected tothermal shock[R].ASME Paper PVP2016-63110,2016.
    [15] UBULOM I A,FIEN A,NEELY A J.Turbine blade life prediction using fluid-thermal-structural interaction simulation[R].ASME Paper GT 2016-57048,2016.
    [16] 王洪刚.热弹性力学概论[M].北京:清华大学出版社,1989.
    [17] 熊庆荣,石小江,侯敏杰,等.基于示温漆的高压涡轮导向叶器表面温度测试[J].燃气涡轮试验与研究,2014,27(3):44-48.XIONG Qingrong,SHI Xiaojiang,HOU Minjie,et al.Surface temperature measurement of turbine nozzle based on temperature-sensitive paint[J].Gas Turbine Experiment and Research,2014,27(3):45-48.(in Chinese)
    [18] 廉筱纯,吴虎.《航空发动机原理》[M].西安:西北工业大学出版社,2005.
    [19] 方神光,吴保生.紊动浮射流中的普朗特数取值研究[J].航空动力学报,2006,21(3):435-443.FANG Shenguang,WU Baosheng.Study on the value of prandtl number in turbulent buoyant jet[J].Journal of Aerospace Power,2006,21(3):435-443.(in Chinese)
    [20] BECK J V,BLACKWELL B S.CLAIR C R.Inverse heat conduction:ill-posed problems[M].New York:Wiley Press,1985:218-237.
    [21] 《中国航空材料手册》编辑委员会.中国航空材料手册[M].北京:中国标准出版社,2002:585-593.
    [22] 关鹏,艾延廷,石小江,等.气膜冷却叶片热冲击分析网格生成技术[J].热能动力工程,2016,31(10):25-31.GUAN Peng,AI Yanting,SHI Xiaojiang,et al.Grid generation technology for the analysis of air-flim cooling vane subjected to thermal shock load[J].Journal of Engineering for Thermal Energy and Power,2016,31(10):25-31.(in Chinese)
    [23] 郭兆元,王强,冯国泰.涡轮气热弹耦合计算模型与算例[J].航空学报,2009,30(2):213-219.GUO Zhaoyuan,WANG Qiang,FENG Guotai.Calculation model and calculation examples for thermal-flow-elastic conjugate simulation of turbine engine[J].Acta Aeronautica et Astronautica Sinica,2009,30(2):213-219.(in Chinese)
    [24] 李维特,黄保海,毕仲波,等.热应力理论分析及应用[M].北京:中国电力出版社,2004:94-95.
  • 加载中
计量
  • 文章访问数:  569
  • HTML浏览量:  4
  • PDF量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回