留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙烯燃烧化学动力学机理的简化与分析

李瑞 何国强 秦飞 刘冰 席双惠

李瑞, 何国强, 秦飞, 刘冰, 席双惠. 乙烯燃烧化学动力学机理的简化与分析[J]. 航空动力学报, 2018, 33(9): 2074-2083. doi: 10.13224/j.cnki.jasp.2018.09.004
引用本文: 李瑞, 何国强, 秦飞, 刘冰, 席双惠. 乙烯燃烧化学动力学机理的简化与分析[J]. 航空动力学报, 2018, 33(9): 2074-2083. doi: 10.13224/j.cnki.jasp.2018.09.004
Skeletal chemical kinetic model generation and analysis for combustion of ethylene[J]. Journal of Aerospace Power, 2018, 33(9): 2074-2083. doi: 10.13224/j.cnki.jasp.2018.09.004
Citation: Skeletal chemical kinetic model generation and analysis for combustion of ethylene[J]. Journal of Aerospace Power, 2018, 33(9): 2074-2083. doi: 10.13224/j.cnki.jasp.2018.09.004

乙烯燃烧化学动力学机理的简化与分析

doi: 10.13224/j.cnki.jasp.2018.09.004
基金项目: 国家自然科学基金(51376152)

Skeletal chemical kinetic model generation and analysis for combustion of ethylene

  • 摘要: 为了获得高精度、小尺寸的乙烯简化机理,采用基于误差传播的直接关系图(DRGEP)法和反应路径分析(PFA)法对USC(University of Southern California)-Ⅱ机理在宽范围工况下进行简化,通过取交集方式得到了包含38个组分和243个反应的框架机理,采用灵敏性分析得到了包含30个组分和167个反应的框架机理,其最大点火延时误差为7.10%。在较宽的工况范围内对30个组分的框架机理进行了验证与机理分析,结果表明:此框架机理在点火延时,火焰传播速度,温度曲线,组分摩尔分数曲线,反应的灵敏性系数,反应路径和不确定性等燃烧特性参数与详细机理吻合较好。通过准稳态假设(QSSA)方法简化得到了更适用于工程应用的24个组分和20个总包反应的全局简化机理,并验证了其点火延时。

     

  • [1] WESTBROOK C K,MIZOBUCHI Y,POINSOT T,et al.Computational combustion[J].Proceedings of the Combustion Institute,2005,30(1):125-157.
    [2] DAGAUT P,CATHONNET M.The ignition,oxidation,and combustion of kerosene:a review of experimental and kinetic modeling[J].Progress in Energy and Combustion Science,2006,32(1):48-92.
    [3] 马洪安,解茂昭,曾文,等.航空发动机燃烧室燃烧过程与排放物生成的反应动力学数值模拟[J].航空动力学报,2013,28(2):297-306.MA Hongan,XIE Maozhao,ZENG Wen,et al.Reaction kinetic numerical simulation of combustion process and emission formation in aero-engine combustor[J].Journal of Aerospace Power,2013,28(2):297-306.(in Chinese)
    [4] 郑东,于维铭,钟北京.RP-3航空煤油替代燃料及其化学反应动力学模型[J].物理化学学报,2015,31(4):636-642.ZHENG Dong,YU Weiming,ZHONG Beijing.RP-3 aviation kerosene surrogate fuel and the chemical reaction kinetic model[J].Acta Physico-Chimica Sinica,2015,31(4):636-642.(in Chinese)
    [5] LU T F,LAW C K,Toward accommodating realistic fuel chemistry in large-scale computations[J].Progress in Energy and Combustion Science,2009,35(2):192-215.
    [6] XIN Y X,SHEEN D A,WANG H,et al.Skeletal reaction model generation,uncertainty quantification and minimization:combustion of butane[J].Combustion and Flame,2014,161(12):3031-3039.
    [7] VALORANI M,CRETA F,GOUSSIS D A,et al.An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP[J].Combustion and Flame,2006,146(1):29-51.
    [8] VAJDA S,VALKO P,TURANYI T.Principal component analysis of kinetic-models[J].International Journal of Chemical Kinetics,1985,17(1):55-81.
    [9] LVS T,NILSSON D,MAUSS F.Automatic reduction pro-cedure for chemical mechanisms applied to premixed me-thane/air flames[J].Proceedings of the Combustion Institute,2000,28(2):1809-1815.
    [10] NAGY T,TURNYI T.Reduction of very large reaction mechanisms using methods based on simulation error mini-mization[J].Combustion and Flame,2009,156(2):417-428.
    [11] SUN W,CHEN Z,GOU X L,et al,A path flux analysis method for the reduction of detailed chemical kinetic mechanisms[J].Combustion and Flame,2010,157(7):1298-1307.
    [12] LIU A K,JIAO Y,LI S H,et al.Flux projection tree method for mechanism reduction[J].Energy Fuels 2014,28(8):5426-5433.
    [13] LU T F,LAW C K.A directed relation graph method for mechanism reduction[J].Proceedings of the Combustion Institute,2005,30(1):1333-1341.
    [14] PEPIOT-DESJARDINS P,PITSCH H,An efficient error-propagation-based reduction method for large chemical kinetic mechanisms[J].Combustion and Flame,2008,154(1):67-81.
    [15] LUO Z,LU T F,MACIASZEK M J,et al.A reduced mechanism for high-temperature oxidation of biodiesel surrogates[J].Energy Fuels,2010,24(12):6283-6293.
    [16] LU T F,PLOMER M,LUO Z,et al.Directed relation graph with expert knowledge for skeletal mechanism reduction[R].Atlanta,GA:the 7th US National Combustion Meeting,2011.
    [17] ZHENG X L,LU T F,LAW C K,Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene[J].Proceedings of the Combustion Institute,2007,31(1):367-375.
    [18] NIEMEYER K E,SUNG C J,RAJU M P.Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis[J].Combustion and Flame,2010,157(9):1760-1770.
    [19] XIN Y X,LAW C K,LU T F.A reduced mechanism for iso-octane oxidation[R].Ann Arbor,MI,USA: the 6th National Combustion Meeting of the US Sections of the Combustion Institute,2009.
    [20] LI R,LI S H,WANG F,et al.Sensitivity analysis based on intersection approach for mechanism reduction of cyclohexane[J].Combustion and Flame,2016,166(1):55-65.
    [21] TOMLIN A S,PILLING M J,TURNYI T,et al.Mechanism reduction for the oscillatory oxidation of hydrogen-sensitivity and quasi-steady-state analyses[J].Combustion and Flame,1992,91(2):107-130.
    [22] KECK J C.Rate-controlled constrained-equilibrium theory of chemical-reactions in complex-systems[J].Progress in Energy and Combustion Science,1990,16(2):125-154.
    [23] REN T,PATEL M K,BLOK K.Steam cracking and methane to olens:energy use,CO2 emissions and production costs[J].Energy,2008,33(5):817-833.
    [24] 于浩,陈正,苟小龙.乙烯氧化机理的简化[J].工程热物理学报,2013,34(2):376-379.YU Hao,CHEN Zheng,GOU Xiaolong.Reduced mechanism for the oxidation of ethane[J].Journal of Engineering Thermophysics,2013,34(2):376-379.(in Chinese)
    [25] 刘爱科,李树豪,王繁,等.乙烯氧化动力学机理简化[J].推进技术,2015,36(1):142-148.LIU Aike,LI SHuhao,WANG Fan,et al.Reduction of ethylene combustion kinetic mechanism[J].Journal of Propulsion Technology,2015,36(1):142-148.(in Chinese)
    [26] COLKET M B,SPADACCINI L J.Scramjet fuels autoignition study[J].Journal of Propulsion and Power,2001,17(2):315-323.
    [27] 李晓鹏,张泰昌,齐力,等.超声速燃烧中的特征尺度及影响因素[J].航空动力学报,2013,28(7):1458-1466.LI Xiaopeng,ZHANG Taichangg,QI Li,et al.Chracteristic scales and influential factors in supersonic combustion[J].Journal of Aerospace Power,2013,28(7):1458-1466.(in Chinese)
    [28] 肖保国,赵慧勇,杨顺华,等.乙烯简化化学动力学模型在HIFiRE燃烧室计算中的应用[J].航空动力学报,2014,29(6):1287-1294.XIAO Baoguo,ZHANG Huiyong,YANG Shunhua,et al.Application of reduced chemical kinetic model for ethylene combustion in combustor calculation of HIFiRE[J].Journal of Aerospace Power,2014,29(6):1287-1294.(in Chinese)
    [29] 田野,乐嘉陵,杨顺华,等.空气节流对超燃冲压发动机燃烧室起动点火影响的数值研究[J].航空动力学报,2013,28(7):1495-1502.
    TAIN Ye,LE Jialing,YANG Shunhua,et al.Numerical study on air throttling influence of ignition transient on the scramjet combustor[J].Journal of Aerospace Power,2013,28(7):1495-1502.(in Chinese)
    [30] 张弯洲,乐嘉陵,杨顺华,等.马赫数为4的超燃发动机碳氢燃料点火试[J].航空动力学报,2013,28(4):800-806.ZHANG Wanzhou,LE Jialing,YANG Shunhua,et al.Experiments on hydrocarbon fuel ignition for scramjet at Mach 4[J].Journal of Aerospace Power,2013,28(4):800-806.(in Chinese)
    [31] WANG H,YOU X Q,JOSHI A V,et al.High-temperature combustion reaction model of H2,CO/C1-C4 compounds.[2017-03-25].http:∥ignis.usc.edu/Mechanisms/USCMech%20II/USC_Mech%20II.htm.
    [32] WANG Quande.Skeletal mechanism generation for methyl butanoate combustion via directed relation graph based methods[J].Acta Physico-Chimica Sinica,2016,32(3):595-604.
    [33] LI S H,LI R,GUO J J,et al.A skeletal kinetic model generation for combustion of C1-C2 fuels[J].Acta Physico-Chimica Sinica,2016,32(7):1623-1633.
    [34] ZEUCH T,MORAC G,AHMED S S,et al.A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction[J].Combustion and Flame,2008,155(4):651-674.
    [35] ZIEHN T,HUGHES K J,GRIFFITHS J F,et al.A global sensitivity study of cyclohexane oxidation under low temperature fuel-rich conditions using HDMR methods[J].Combustion Theory and Modelling,2009,13(4):589-605.
    [36] ANDROULAKIS I P,GRENDA J M,BOZZELLI J W.Time-integrated pointers for enabling the analysis of detailed reaction mechanisms[J].AIChE Journal,2004,50(1):2956-2970.
    [37] WANG H,SHEEN D A.Combustion kinetic model uncertainty quantification,propagation and minimization[J].Progress in Energy and Combustion Science,2015,47(1):1-31.
    [38] FRIDLYAND A,JOHNSON M S,GOLDSBOROUGH S S,et al.The role of correlations in uncertainty quantication of transportation relevant fuel models[J].Combustion and Flame,2017,180(1):239-249.
    [39] HBRARD E,TOMLIN A S,BOUNACEUR R,et al.Determining predictive uncertainties and global sen-sitivities for large parameter systems:a case study for n-butane oxidation[J].Proceedings of the Combustion Institute,2015,35(1):607-616.
    [40] LU T,LAW C K.A criterion based on computational singular perturbation for the identification of quasi steady state species:a reduced mechanism for methane oxidation with NO chemistry[J].Combustion and Flame,2008,154(4):761-774.
    [41] 李树豪,方亚梅,王繁,等.庚酸甲酯高温燃烧化学动力学机理的系统简化和分析[J].高等学校化学学报,2013,34(7):1714-1722.LI Shuhao,FANG Yamei,WANG Fan,et al.Systematic reduction and analysis of kinetic mechanism for high-tempereture combustion of methyl heptanoate[J].Chemical Journal of Chinese Universities,2013,34(7):1714-1722.(in Chinese)
  • 加载中
计量
  • 文章访问数:  937
  • HTML浏览量:  22
  • PDF量:  896
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-25
  • 刊出日期:  2018-09-28

目录

    /

    返回文章
    返回