留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带涂层干摩擦阻尼器的分子动力学仿真

樊江 戴琦晖 王晋斌 申秀丽 胡殿印 王荣桥

樊江, 戴琦晖, 王晋斌, 申秀丽, 胡殿印, 王荣桥. 带涂层干摩擦阻尼器的分子动力学仿真[J]. 航空动力学报, 2018, 33(10): 2333-2342. doi: 10.13224/j.cnki.jasp.2018.10.004
引用本文: 樊江, 戴琦晖, 王晋斌, 申秀丽, 胡殿印, 王荣桥. 带涂层干摩擦阻尼器的分子动力学仿真[J]. 航空动力学报, 2018, 33(10): 2333-2342. doi: 10.13224/j.cnki.jasp.2018.10.004
Molecular dynamics simulations of dry friction dampers with coating[J]. Journal of Aerospace Power, 2018, 33(10): 2333-2342. doi: 10.13224/j.cnki.jasp.2018.10.004
Citation: Molecular dynamics simulations of dry friction dampers with coating[J]. Journal of Aerospace Power, 2018, 33(10): 2333-2342. doi: 10.13224/j.cnki.jasp.2018.10.004

带涂层干摩擦阻尼器的分子动力学仿真

doi: 10.13224/j.cnki.jasp.2018.10.004

Molecular dynamics simulations of dry friction dampers with coating

  • 摘要: 从纳米级微凸体间的剪切运动出发研究干摩擦阻尼器摩擦机理。采用更加精确的多体势,建立描述两个可变形半球状微凸体剪切运动过程的分子动力学模型。应用该模型分析了单晶铜微凸体剪切运动过程中切向力和法向力随相对位移、干涉深度和微凸体半径的变化规律,同时研究了剪切过程结束后剩余变形能的变化。通过多尺度分析和统计学工具,建立了干摩擦模型的微凸体模型,并与实验结果进行对比。研究表明:单晶铜在真空中发生干摩擦时,结合面的表面法向接触刚度与法向载荷成正比,滑动摩擦因数只与表面粗糙度参数有关。计算结果与纯铜摩擦实验结果相吻合,证明该方法可准确地分析覆盖涂层的干摩擦阻尼器工作面干摩擦特性,对于已知微观参数的表面,能够准确地预测滑动摩擦因数。

     

  • [1] 李琳,刘久周,李超.航空发动机中的干摩擦阻尼器及其设计技术研究进展[J].航空动力学报,2016,31(10):2305-2317.LI Lin,LIU Jiuzhou,LI Chao.Review of the dry friction dampers in aero-engine and their design technologies[J].Journal of Aerospace Power,2016,31(10):2305-2317.(in Chinese)
    [2] 温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2012.
    [3] 徐家文.整体叶轮的特种加工方法[J].航空精密制造技术,1992(4):19-21.XU Jiawen.Special working processes of a whole propeller[J].Aviation Precision Manufacturing Technology,1992(4):19-21.(in Chinese)
    [4] CHO M H,KIM S J,JANG H.Atomic scale stick-slip caused by dislocation nucleation and propagation during scratching of a Cu substrate with a nanoindenter:a molec-ular dynamics simulation[J].Wear,2005,259(7):1392-1399.
    [5] 黄健萌,陈晶晶,李凝.两种不同形状压头与单晶铜基体间接触力和摩擦力的纳观分析[J].摩擦学学报,2015,35(3):308-314.HUANG Jianmeng,CHEN Jingjing,LI Ning.Analysis of the contact and friction force behaviour between different indenter shape and substrate on atomic scale[J].Tribology,2015,35(3):308-314.(in Chinese)
    [6] 栾智存.基于分子动力学模拟的粗糙表面接触与摩擦特性研究[D].北京:北京理工大学,2015.LUAN Zhicun.Research on the contact and friction characteristics of rough surfaces based on molecular dynamics simulations[D].Beijing:Beijing Institute of Technology,2015.(in Chinese)
    [7] ZHONG J,ADAMS J B,HECTOR L G.Molecular dynamics simulations of asperity shear in aluminum[J].Journal of Applied Physics,2003,94(7):4306-4314.
    [8] ABRAHAM F F,RUDGE W E,ALEXOPOULOS P S.Fragmentation dynamics in asperity collisions:A molecular dynamics simulation study[J].Computational Materials Science,1994,3(1):21-40.
    [9] BHUSHAN B.Principles and applications of tribology[M].New York:John Wiley and Sons,2013.
    [10] 波波夫.接触力学与摩擦学的原理及其应用[M].李强,雒建斌,译.北京:清华大学出版社,2011.
    [11] DAW M S,BASKES M I.Embedded-atom method:derivation and application to impurities,surfaces and other defects in metals[J].Physical Review:B Condensed Matter,1984,29(12):6443-6453.
    [12] HOOVER W G.Canonical dynamics equilibrium phase space distributions[J].Physical Review:A,1985,31(3):1695-1697.
    [13] ALLEN M P,TILDESLEY D J.Computer simulation of liquids[M].Oxford:Oxford University Press,1987.
    [14] HAILE J M.Molecular dynamics simulation:elementary methods[M].New York:John Wiley and Sons,1992.
    [15] VILLARREAL M A,OVIEDO O A,LEIVA E P M.A straight forward approach for the determination of the maximum time step for the simulation of nanometric metallic systems[J].Journal of Chemical Theory and Computation,2012,8(5):1744-1749.
    [16] 张甜甜,黄传兵,兰昊,等.镍基耐高温自润滑刷式封严涂层研究[J].航空制造技术,2017,60(8):24-29.ZHANG Tiantian,HUANG Chuanbing,LAN Hao,et al.Investigation of Ni-based brush seal coatings with self-lubricating property at elevated temperature[J].Aeronautical Manufacturing Technology,2017,60(8):24-29.(in Chinese)
    [17] 刘如铁,李溪滨,苏春明,等.镍基高温自润滑材料的摩擦学特性研究[J].粉末冶金材料科学与工程,1998,3(3):206-210.LIU Rutie,LI Xibing,SU Chunming,et al.Study on the tribological characteristics of high-temperature self-lubricating nickel-base material[J].Materials Science and Engineering of Powder Metallurgy,1998,3(3):206-210.(in Chinese)
    [18] FOILES S M,BASKES M I,DAW M S.Embedded-atom-method functions for the FCC metals Cu[J].Physical Review:B Condensed Matter,1986,33(12):7983-7991.
    [19] JENG Y R,KAO W C,TSAI P C.Investigation into the mechanical contact behavior of single asperities using static atomistic simulations[J].Applied Physics Letters,2007,91(9):091904.1-091904.3.
    [20] GREENWOOD J A,WILLIAMSON J B P.Contact of nominally flat surfaces[J].Proceedings of the Royal Society of London:Series A Mathematical and Physical Sciences,1966,295(1442):300-319.
    [21] GREEN A P.Friction between unlubricated metals:A theoretical analysis of the junction model[J].Proceedings of the Royal Society of London:Series A Mathematical and Physical Sciences,1955,228(1173):191-204.
    [22] BROWN R D,BURTON R A.Friction and adhesion of copper in vacuum[J].Thorax,1967,89(4):332-336.
    [23] JANE J,ROAMER P,STAUGAITIS C L.Sliding friction of copper alloys in vacuum[J].Tribology Transactions,1969,12(2):171-182.
  • 加载中
计量
  • 文章访问数:  739
  • HTML浏览量:  5
  • PDF量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-27
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回